BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24816703)

  • 1. Separation characteristics of lignin from Eucalyptus camaldulensis lignin celluloses for biomedical cellulose.
    Peng W; Wang L; Zhang M; Lin Z
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):723-8. PubMed ID: 24816703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis.
    Shen XJ; Wang B; Huang PL; Wen JL; Sun RC
    Bioresour Technol; 2016 Apr; 206():57-64. PubMed ID: 26845220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular bonding characteristics of Self-plasticized bamboo composites.
    Xue Q; Peng W; Ohkoshi M
    Pak J Pharm Sci; 2014 Jul; 27(4 Suppl):975-82. PubMed ID: 25016255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.
    da Silva Morais AP; Sansígolo CA; de Oliveira Neto M
    Bioresour Technol; 2016 Aug; 214():623-628. PubMed ID: 27187566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride.
    Casas A; Alonso MV; Oliet M; Santos TM; Rodriguez F
    Carbohydr Polym; 2013 Feb; 92(2):1946-52. PubMed ID: 23399242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride.
    Li WZ; Ju MT; Wang YN; Liu L; Jiang Y
    Carbohydr Polym; 2013 Jan; 92(1):228-35. PubMed ID: 23218288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa.
    Sonia A; Priya Dasan K
    Carbohydr Polym; 2013 Jan; 92(1):668-74. PubMed ID: 23218352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp.
    Wan J; Wang Y; Xiao Q
    Bioresour Technol; 2010 Jun; 101(12):4577-83. PubMed ID: 20181478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification.
    Romaní A; Garrote G; López F; Parajó JC
    Bioresour Technol; 2011 May; 102(10):5896-904. PubMed ID: 21392966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids.
    Deng B; Hou Y; Wang F; Bao Y; Zeng F; Qin C; Liang C; Huang C; Ma J; Yao S
    Bioresour Technol; 2022 Jul; 355():127304. PubMed ID: 35562023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).
    Wang K; Jiang JX; Xu F; Sun RC
    Bioresour Technol; 2009 Nov; 100(21):5288-94. PubMed ID: 19502052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The Chemical Composition of Bamboo after Heat Pretreatment with Fourier Infrared Spectrum Analysis].
    Chu J; Ma L; Zhang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3557-62. PubMed ID: 30198674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment.
    Varanasi P; Singh P; Arora R; Adams PD; Auer M; Simmons BA; Singh S
    Bioresour Technol; 2012 Dec; 126():156-61. PubMed ID: 23073103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment.
    Moniruzzaman M; Ono T
    Bioresour Technol; 2013 Jan; 127():132-7. PubMed ID: 23131633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants.
    Papa G; Varanasi P; Sun L; Cheng G; Stavila V; Holmes B; Simmons BA; Adani F; Singh S
    Bioresour Technol; 2012 Aug; 117():352-9. PubMed ID: 22634318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneities in the chemical structure of sugarcane bagasse lignin.
    Sun JX; Sun XF; Sun RC; Fowler P; Baird MS
    J Agric Food Chem; 2003 Nov; 51(23):6719-25. PubMed ID: 14582966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alkaline preswelling on the structure of lignins from Eucalyptus.
    Chen WJ; Yang S; Zhang Y; Wang YY; Yuan TQ; Sun RC
    Sci Rep; 2017 May; 7():45752. PubMed ID: 28462935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.