BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24816915)

  • 1. Design of a zinc-finger hydrolase with a synthetic αββ protein.
    Srivastava KR; Durani S
    PLoS One; 2014; 9(5):e96234. PubMed ID: 24816915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-finger hydrolase: Computational selection of a linker and a sequence towards metal activation with a synthetic αββ protein.
    Patel K; Srivastava KR; Durani S
    Bioorg Med Chem; 2010 Dec; 18(23):8270-6. PubMed ID: 21035349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    J Am Chem Soc; 2013 Apr; 135(15):5895-903. PubMed ID: 23516959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.
    Ganguly A; Luong TQ; Brylski O; Dirkmann M; Möller D; Ebbinghaus S; Schulz F; Winter R; Sanchez-Garcia E; Thiel W
    J Phys Chem B; 2017 Jul; 121(26):6390-6398. PubMed ID: 28648071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn(II) Carbonic Anhydrase.
    Borghesani V; Zastrow ML; Tolbert AE; Deb A; Penner-Hahn JE; Pecoraro VL
    Chemistry; 2024 Apr; 30(24):e202304367. PubMed ID: 38377169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cured of "stickiness", poly-L β-hairpin is promoted with LL-to-DD mutation as a protein and a hydrolase mimic.
    Patel K; Goyal B; Kumar A; Kishore N; Durani S
    J Phys Chem B; 2010 Dec; 114(50):16887-93. PubMed ID: 21126041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial β-propeller protein-based hydrolases.
    Clarke DE; Noguchi H; Gryspeerdt JAG; De Feyter S; Voet ARD
    Chem Commun (Camb); 2019 Jul; 55(60):8880-8883. PubMed ID: 31321399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the conserved active-site residues Tyr7, Glu106 and Thr199 for the catalytic function of human carbonic anhydrase II.
    Liang Z; Xue Y; Behravan G; Jonsson BH; Lindskog S
    Eur J Biochem; 1993 Feb; 211(3):821-7. PubMed ID: 8436138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.
    Wiersma-Koch H; Sunden F; Herschlag D
    Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteromeric assembled polypeptidic artificial hydrolases with a six-helical bundle scaffold.
    Bai Y; Ling Y; Shi W; Cai L; Jia Q; Jiang S; Liu K
    Chembiochem; 2011 Nov; 12(17):2647-58. PubMed ID: 21957084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An azacrown-functionalized peptide as a metal ion based catalyst for the cleavage of a RNA-model substrate.
    Rossi P; Felluga F; Tecilla P; Formaggio F; Crisma M; Toniolo C; Scrimin P
    Biopolymers; 2000; 55(6):496-501. PubMed ID: 11304677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic reaction by zinc finger mutant peptides: successful redesign of structural zinc sites into catalytic zinc sites.
    Nomura A; Sugiura Y
    Inorg Chem; 2004 Mar; 43(5):1708-13. PubMed ID: 14989663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Homo sapiens PTD012 reveals a zinc-containing hydrolase fold.
    Manjasetty BA; Büssow K; Fieber-Erdmann M; Roske Y; Gobom J; Scheich C; Götz F; Niesen FH; Heinemann U
    Protein Sci; 2006 Apr; 15(4):914-20. PubMed ID: 16522806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paraoxon, 4-nitrophenyl phosphate and acetate are substrates of α- but not of β-, γ- and ζ-carbonic anhydrases.
    Innocenti A; Supuran CT
    Bioorg Med Chem Lett; 2010 Nov; 20(21):6208-12. PubMed ID: 20833546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.
    Der BS; Edwards DR; Kuhlman B
    Biochemistry; 2012 May; 51(18):3933-40. PubMed ID: 22510088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle.
    Tu CK; Thomas HG; Wynns GC; Silverman DN
    J Biol Chem; 1986 Aug; 261(22):10100-3. PubMed ID: 3090030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis.
    Krebs JF; Fierke CA
    J Biol Chem; 1993 Jan; 268(2):948-54. PubMed ID: 8419374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A de novo designed metalloenzyme for the hydration of CO2.
    Cangelosi VM; Deb A; Penner-Hahn JE; Pecoraro VL
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7900-3. PubMed ID: 24943466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.