These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24816972)

  • 61. Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions.
    Yedra L; Eljarrat A; Arenal R; López-Conesa L; Pellicer E; López-Ortega A; Estrader M; Sort J; Baró MD; Estradé S; Peiró F
    Analyst; 2016 Aug; 141(16):4968-72. PubMed ID: 27314942
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Composition fluctuations in dilute nitride (Ga,In)(N,As)/GaAs heterostructures measured by low-loss electron energy-loss spectroscopy.
    Kong X; Trampert A; Ploog KH
    Micron; 2006; 37(5):465-72. PubMed ID: 16386909
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Probing the chemical structure in diamond-based materials using combined low-loss and core-loss electron energy-loss spectroscopy.
    Longo P; Twesten RD; Olivier J
    Microsc Microanal; 2014 Jun; 20(3):779-83. PubMed ID: 24666478
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 3D image reconstruction of fiber systems using electron tomography.
    Fakron OM; Field DP
    Ultramicroscopy; 2015 Feb; 149():21-5. PubMed ID: 25464156
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope.
    Ruben G; Bosman M; D'Alfonso AJ; Okunishi E; Kondo Y; Allen LJ
    Ultramicroscopy; 2011 Nov; 111(11):1540-6. PubMed ID: 21939618
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Study of changes in composition and EELS ionization edges upon Ni4Ti3 precipitation in a NiTi alloy.
    Yang Z; Schryvers D
    Micron; 2006; 37(5):503-7. PubMed ID: 16182550
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles.
    Haberfehlner G; Trügler A; Schmidt FP; Hörl A; Hofer F; Hohenester U; Kothleitner G
    Nano Lett; 2015 Nov; 15(11):7726-30. PubMed ID: 26495933
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Density measurement of thin layers by electron energy loss spectroscopy (EELS).
    Thomas J; Ramm J; Gemming T
    Micron; 2013 Jul; 50():57-61. PubMed ID: 23791912
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Review of recent advances in spectrum imaging and its extension to reciprocal space.
    Maigné A; Twesten RD
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):99-109. PubMed ID: 19398780
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns.
    Kong X; Ristić J; Sanchez-Garcia MA; Calleja E; Trampert A
    Nanotechnology; 2011 Oct; 22(41):415701. PubMed ID: 21914935
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures.
    Warner JH; Lin YC; He K; Koshino M; Suenaga K
    ACS Nano; 2014 Nov; 8(11):11806-15. PubMed ID: 25389658
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tunable single-phase magnetic behavior in chemically synthesized AFeO
    Sarkar T; Muscas G; Barucca G; Locardi F; Varvaro G; Peddis D; Mathieu R
    Nanoscale; 2018 Dec; 10(48):22990-23000. PubMed ID: 30500041
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electron energy loss spectroscopic imaging in biology.
    Simon GT; Heng YM
    Scanning Microsc; 1988 Mar; 2(1):257-66. PubMed ID: 3285454
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparing three quantification methods on N/Si ratio analysis using electron energy loss spectroscopy (EELS).
    Rui X; Wang YY; Wang S; Chan SF; Jin Q
    Micron; 2022 Jun; 157():103263. PubMed ID: 35390752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In situ electron energy-loss spectroscopy in liquids.
    Holtz ME; Yu Y; Gao J; Abruña HD; Muller DA
    Microsc Microanal; 2013 Aug; 19(4):1027-35. PubMed ID: 23721691
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes.
    Roesgaard S; Ramasse Q; Chevallier J; Fyhn M; Julsgaard B
    Nanotechnology; 2018 May; 29(21):215707. PubMed ID: 29521282
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tilt-series and electron microscope alignment for the correction of the non-perpendicularity of beam and tilt-axis.
    Díez DC; Seybert A; Frangakis AS
    J Struct Biol; 2006 May; 154(2):195-205. PubMed ID: 16503168
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The development and characteristics of a high-speed EELS mapping system for a dedicated STEM.
    Isakozawa S; Kaji K; Jarausch K; Terada S; Baba N
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):41-5. PubMed ID: 18322296
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS).
    Cosandey F; Su D; Sina M; Pereira N; Amatucci GG
    Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.