BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 24817153)

  • 1. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans.
    Sedláček V; Kučera I
    FEBS Lett; 2019 Apr; 593(7):697-702. PubMed ID: 30883730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    Microbiol Res; 2016; 188-189():9-22. PubMed ID: 27296958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans.
    Sedlácek V; van Spanning RJ; Kucera I
    Arch Biochem Biophys; 2009 Mar; 483(1):29-36. PubMed ID: 19138657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance.
    Sedláček V; Kučera I
    Arch Microbiol; 2010 Nov; 192(11):919-26. PubMed ID: 20821194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insight into Catalysis by the Flavin-Dependent NADH Oxidase (Pden_5119) of
    Kryl M; Sedláček V; Kučera I
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure.
    Eschenbrenner M; Covès J; Fontecave M
    J Biol Chem; 1995 Sep; 270(35):20550-5. PubMed ID: 7657631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans.
    Yano T; Sled' VD; Ohnishi T; Yagi T
    J Biol Chem; 1996 Mar; 271(10):5907-13. PubMed ID: 8621464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans.
    Mazoch J; Tesarík R; Sedlácek V; Kucera I; Turánek J
    Eur J Biochem; 2004 Feb; 271(3):553-62. PubMed ID: 14728682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution.
    Kobori T; Sasaki H; Lee WC; Zenno S; Saigo K; Murphy ME; Tanokura M
    J Biol Chem; 2001 Jan; 276(4):2816-23. PubMed ID: 11034992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans.
    Sedláček V; van Spanning RJM; Kučera I
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.