BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24817262)

  • 1. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.
    Choi SA; Jung JY; Kim K; Kwon JH; Lee JS; Kim SW; Park JY; Yang JW
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2199-204. PubMed ID: 24817262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.
    Choi SA; Jung JY; Kim K; Lee JS; Kwon JH; Kim SW; Yang JW; Park JY
    Bioresour Technol; 2014 Jun; 161():469-72. PubMed ID: 24755396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass.
    Kim KH; Lee OK; Kim CH; Seo JW; Oh BR; Lee EY
    Bioresour Technol; 2016 Jul; 211():472-7. PubMed ID: 27035480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101.
    Hong WK; Rairakhwada D; Seo PS; Park SY; Hur BK; Kim CH; Seo JW
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1468-80. PubMed ID: 21424706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer.
    Kwak M; Kang SG; Hong WK; Han JI; Chang YK
    Bioprocess Biosyst Eng; 2018 May; 41(5):671-678. PubMed ID: 29453513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.
    Teo CL; Idris A
    Bioresour Technol; 2014 Nov; 171():477-81. PubMed ID: 25201293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101.
    Hong WK; Yu A; Heo SY; Oh BR; Kim CH; Sohn JH; Yang JW; Kondo A; Seo JW
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):959-63. PubMed ID: 23053417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101.
    Ryu BG; Kim K; Kim J; Han JI; Yang JW
    Bioresour Technol; 2013 Feb; 129():351-9. PubMed ID: 23262011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70.
    Yu XJ; Yu ZQ; Liu YL; Sun J; Zheng JY; Wang Z
    Appl Biochem Biotechnol; 2015 Nov; 177(6):1229-40. PubMed ID: 26299378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid.
    Hong WK; Kim CH; Rairakhwada D; Kim S; Hur BK; Kondo A; Seo JW
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):129-33. PubMed ID: 21959581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists.
    Liu Y; Tang J; Li J; Daroch M; Cheng JJ
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9643-52. PubMed ID: 25186147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.
    Cheng YR; Sun ZJ; Cui GZ; Song X; Cui Q
    Enzyme Microb Technol; 2016 Nov; 93-94():182-190. PubMed ID: 27702480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid.
    Kim K; Jung Kim E; Ryu BG; Park S; Choi YE; Yang JW
    Bioresour Technol; 2013 May; 135():269-74. PubMed ID: 23206808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-purity biodiesel production from microalgae and added-value lipid extraction: a new process.
    Veillette M; Giroir-Fendler A; Faucheux N; Heitz M
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):109-19. PubMed ID: 24859519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp. SD116.
    Gao M; Song X; Feng Y; Li W; Cui Q
    J Oleo Sci; 2013; 62(3):143-51. PubMed ID: 23470441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116.
    Song X; Tan Y; Liu Y; Zhang J; Liu G; Feng Y; Cui Q
    J Agric Food Chem; 2013 Oct; 61(41):9876-81. PubMed ID: 24053543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid.
    Manikan V; Kalil MS; Hamid AA
    Sci Rep; 2015 Feb; 5():8611. PubMed ID: 25721623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Biochemical Fingerprinting of Oleaginous
    Yu XJ; Huang CY; Chen H; Wang DS; Chen JL; Li HJ; Liu XY; Wang Z; Sun J; Wang ZP
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications.
    Otero P; Saha SK; Gushin JM; Moane S; Barron J; Murray P
    Anal Bioanal Chem; 2017 Jul; 409(19):4659-4667. PubMed ID: 28593370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polar Lipid Profile of Nannochloropsis oculata Determined Using a Variety of Lipid Extraction Procedures.
    Servaes K; Maesen M; Prandi B; Sforza S; Elst K
    J Agric Food Chem; 2015 Apr; 63(15):3931-41. PubMed ID: 25801099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.