BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24817310)

  • 1. Mechanical basis of otoacoustic emissions in tympanal hearing organs.
    Möckel D; Nowotny M; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jul; 200(7):681-91. PubMed ID: 24817310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No evidence for DPOAEs in the mechanical motion of the locust tympanum.
    Moir HM; Jackson JC; Windmill JF
    J Exp Biol; 2011 Oct; 214(Pt 19):3165-72. PubMed ID: 21900464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical tuning of the moth ear: distortion-product otoacoustic emissions and tympanal vibrations.
    Mora EC; Cobo-Cuan A; Macías-Escrivá F; Pérez M; Nowotny M; Kössl M
    J Exp Biol; 2013 Oct; 216(Pt 20):3863-72. PubMed ID: 23868848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Otoacoustic emissions from insect ears: evidence of active hearing?
    Kössl M; Möckel D; Weber M; Seyfarth EA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):597-609. PubMed ID: 18516607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tympanal travelling waves in migratory locusts.
    Windmill JF; Göpfert MC; Robert D
    J Exp Biol; 2005 Jan; 208(Pt 1):157-68. PubMed ID: 15601886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of distortion-product otoacoustic emissions in tympanal organs of locusts.
    Möckel D; Kössl M; Lang J; Nowotny M
    J Exp Biol; 2012 Sep; 215(Pt 18):3309-16. PubMed ID: 22915714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generation of DPOAEs in the locust ear is contingent upon the sensory neurons.
    Möckel D; Seyfarth EA; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Aug; 193(8):871-9. PubMed ID: 17534628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPOAEs and tympanal membrane vibrations reveal adaptations of the sexually dimorphic ear of the concave-eared torrent frog, Odorrana tormota.
    Cobo-Cuan A; Feng AS; Zhang F; Narins PM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):79-88. PubMed ID: 36104577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy localization and frequency analysis in the locust ear.
    Malkin R; McDonagh TR; Mhatre N; Scott TS; Robert D
    J R Soc Interface; 2014 Jan; 11(90):20130857. PubMed ID: 24196693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of sensitive distortion-product otoacoustic emissions in insect tympanal organs.
    Kössl M; Möckel D
    J Exp Biol; 2012 Feb; 215(Pt 3):566-7; author reply 567. PubMed ID: 22246266
    [No Abstract]   [Full Text] [Related]  

  • 12. Tuning the drum: the mechanical basis for frequency discrimination in a Mediterranean cicada.
    Sueur J; Windmill JF; Robert D
    J Exp Biol; 2006 Oct; 209(Pt 20):4115-28. PubMed ID: 17023605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved tympanal mechanics of the locust.
    Windmill JF; Bockenhauer S; Robert D
    J R Soc Interface; 2008 Dec; 5(29):1435-43. PubMed ID: 18522928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects.
    Dalhoff E; Turcanu D; Zenner HP; Gummer AW
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1546-51. PubMed ID: 17242353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexual dimorphism in auditory mechanics: tympanal vibrations of Cicada orni.
    Sueur J; Windmill JF; Robert D
    J Exp Biol; 2008 Aug; 211(Pt 15):2379-87. PubMed ID: 18626071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age and noise on tympanal displacement in the Desert Locust.
    Austin TT; Woodrow C; Pinchin J; Montealegre-Z F; Warren B
    J Insect Physiol; 2024 Jan; 152():104595. PubMed ID: 38052320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears.
    Lehmann GU; Berger S; Strauss J; Lehmann AW; Pflüger HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Nov; 196(11):807-16. PubMed ID: 20730436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.