BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24817334)

  • 1. Integrating satellite imagery with simulation modeling to improve burn severity mapping.
    Karau EC; Sikkink PG; Keane RE; Dillon GK
    Environ Manage; 2014 Jul; 54(1):98-111. PubMed ID: 24817334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing fuel treatment effectiveness using satellite imagery and spatial statistics.
    Wimberly MC; Cochrane MA; Baer AD; Pabst K
    Ecol Appl; 2009 Sep; 19(6):1377-84. PubMed ID: 19769087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
    Yu C; Chen LF; Li SS; Tao JH; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locating Forest Management Units Using Remote Sensing and Geostatistical Tools in North-Central Washington, USA.
    Palaiologou P; Essen M; Hogland J; Kalabokidis K
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.
    Zhang JH; Yao FM; Liu C; Yang LM; Boken VK
    Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.
    Wu Z; He HS; Liang Y; Cai L; Lewis BJ
    Environ Manage; 2013 Oct; 52(4):821-36. PubMed ID: 23887487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data.
    Cardil A; Mola-Yudego B; Blázquez-Casado Á; González-Olabarria JR
    J Environ Manage; 2019 Apr; 235():342-349. PubMed ID: 30703648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region.
    Callister KE; Griffioen PA; Avitabile SC; Haslem A; Kelly LT; Kenny SA; Nimmo DG; Farnsworth LM; Taylor RS; Watson SJ; Bennett AF; Clarke MF
    PLoS One; 2016; 11(3):e0150808. PubMed ID: 27029046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire severity and ecosytem responses following crown fires in California shrublands.
    Keeley JE; Brennan T; Pfaff AH
    Ecol Appl; 2008 Sep; 18(6):1530-46. PubMed ID: 18767627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated wildfire risk assessment: framework development and application on the Lewis and Clark National Forest in Montana, USA.
    Thompson MP; Scott J; Helmbrecht D; Calkin DE
    Integr Environ Assess Manag; 2013 Apr; 9(2):329-42. PubMed ID: 22987567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event.
    Prichard SJ; Kennedy MC
    Ecol Appl; 2014 Apr; 24(3):571-90. PubMed ID: 24834742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barren-ground caribou (Rangifer tarandus groenlandicus) behaviour after recent fire events; integrating caribou telemetry data with Landsat fire detection techniques.
    Rickbeil GJ; Hermosilla T; Coops NC; White JC; Wulder MA
    Glob Chang Biol; 2017 Mar; 23(3):1036-1047. PubMed ID: 27506958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 76-year decline and recovery of aspen mediated by contrasting fire regimes: Long-unburned, infrequent and frequent mixed-severity wildfire.
    Brewen CJ; Berrill JP; Ritchie MW; Boston K; Dagley CM; Jones B; Coppoletta M; Burnett CL
    PLoS One; 2021; 16(2):e0232995. PubMed ID: 33539349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.
    Bricher PK; Lucieer A; Shaw J; Terauds A; Bergstrom DM
    PLoS One; 2013; 8(8):e72093. PubMed ID: 23940805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling global geometric spatial information for rotation invariant classification of satellite images.
    Ali N; Zafar B; Iqbal MK; Sajid M; Younis MY; Dar SH; Mahmood MT; Lee IH
    PLoS One; 2019; 14(7):e0219833. PubMed ID: 31323065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian model for predicting monthly fire frequency in Kenya.
    Orero L; Omondi EO; Omolo BO
    PLoS One; 2024; 19(1):e0291800. PubMed ID: 38271480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.
    Kulakowski D; Veblen TT
    Ecology; 2007 Mar; 88(3):759-69. PubMed ID: 17503603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote sensing of suspended solids concentration in a reservoir with frequent wildland fires on its watershed.
    Bonansea M; Fernandez RL
    Water Sci Technol; 2013; 67(1):217-23. PubMed ID: 23128642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.