These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24817618)

  • 1. Assessing the effect of laser beam width on quantitative evaluation of optical properties of intraocular lens implants.
    Walker BN; James RH; Chakravarty A; Calogero D; Ilev IK
    J Biomed Opt; 2014 May; 19(5):055004. PubMed ID: 24817618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple confocal fibre-optic laser method for intraocular lens power measurement.
    Ilev IK
    Eye (Lond); 2007 Jun; 21(6):819-23. PubMed ID: 16710435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncontact method for sensing thickness and refractive index of intraocular lens implants using a self-calibrating dual-confocal laser caliper.
    Kim DH; James R; Calogero D; Ilev IK
    J Biomed Opt; 2018 Jun; 23(6):1-6. PubMed ID: 29916216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy in determining intraocular lens dioptric power assessed by interlaboratory tests.
    Norrby NE; Grossman LW; Geraghty EP; Kreiner CF; Mihori M; Patel AS; Portney V; Silberman DM
    J Cataract Refract Surg; 1996 Sep; 22(7):983-93. PubMed ID: 9041095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal laser method for quantitative evaluation of critical optical properties of toric intraocular lenses.
    Walker BN; James RH; Song S; Calogero D; Ilev IK
    J Cataract Refract Surg; 2016 Mar; 42(3):455-61. PubMed ID: 27063527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ronchi test for testing the powers of bifocal intraocular lenses.
    González C; Villegas ER; Carretero L; Fimia A
    Ophthalmic Physiol Opt; 1997 Mar; 17(2):161-3. PubMed ID: 9196681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of a refractive lens within an existing intraocular lens using a femtosecond laser.
    Sahler R; Bille JF; Enright S; Chhoeung S; Chan K
    J Cataract Refract Surg; 2016 Aug; 42(8):1207-15. PubMed ID: 27531298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging quality of intraocular lenses.
    Rawer R; Stork W; Spraul CW; Lingenfelder C
    J Cataract Refract Surg; 2005 Aug; 31(8):1618-31. PubMed ID: 16129302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy.
    Lombardo M; Talu S; Talu M; Serrao S; Ducoli P
    J Cataract Refract Surg; 2010 Sep; 36(9):1573-8. PubMed ID: 20692572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accommodating Intraocular Lenses.
    Pepose JS; Burke J; Qazi M
    Asia Pac J Ophthalmol (Phila); 2017; 6(4):350-357. PubMed ID: 28650131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of optical diameter of intraocular lenses with intrascleral fixation on higher-order aberrations.
    Kunita D; Inoue M; Itoh Y; Matsuki N; Nagamoto T; Hirakata A
    BMC Ophthalmol; 2017 Jun; 17(1):82. PubMed ID: 28578676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New theoretical matrix formula for intraocular lens calculation using the optimal bending factor.
    Fimia A; Alió J; Pascual I; Beléndez A
    J Cataract Refract Surg; 1993 Mar; 19(2):293-7. PubMed ID: 8487177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative optical refractive biometry for intraocular lens power estimation without axial length and keratometry measurements.
    Ianchulev T; Salz J; Hoffer K; Albini T; Hsu H; Labree L
    J Cataract Refract Surg; 2005 Aug; 31(8):1530-6. PubMed ID: 16129287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the dioptric power accuracy of exact-power-labeled intraocular lenses.
    Hoffer KJ; Calogero D; Faaland RW; Ilev IK
    J Cataract Refract Surg; 2009 Nov; 35(11):1995-9. PubMed ID: 19878834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation.
    Salouti R; Nowroozzadeh MH; Zamani M; Ghoreyshi M; Salouti R
    Optometry; 2011 Mar; 82(3):140-7. PubMed ID: 20933477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of light energy distribution by multifocal intraocular lenses through an experimental optical model.
    Ravalico G; Parentin F; Sirotti P; Baccara F
    J Cataract Refract Surg; 1998 May; 24(5):647-52. PubMed ID: 9610447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncontact common-path Fourier domain optical coherence tomography method for in vitro intraocular lens power measurement.
    Huang Y; Zhang K; Kang JU; Calogero D; James RH; Ilev IK
    J Biomed Opt; 2011 Dec; 16(12):126005. PubMed ID: 22191922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro optical quality measurements of three intraocular lens models having identical platform.
    Son HS; Tandogan T; Liebing S; Merz P; Choi CY; Khoramnia R; Auffarth GU
    BMC Ophthalmol; 2017 Jun; 17(1):108. PubMed ID: 28662629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Newer Intraocular Lens Power Calculation Methods for Eyes after Corneal Refractive Surgery.
    Wang L; Tang M; Huang D; Weikert MP; Koch DD
    Ophthalmology; 2015 Dec; 122(12):2443-9. PubMed ID: 26459996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Characterization Method for Tilted or Decentered Intraocular Lenses.
    Bonaque-González S; Bernal-Molina P; Marcos-Robles M; López-Gil N
    Optom Vis Sci; 2016 Jul; 93(7):705-13. PubMed ID: 27046092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.