BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24817660)

  • 1. Silica nanoparticles as tracers of the gelation dynamics of a natural biopolymer physical gel.
    Ruta B; Czakkel O; Chushkin Y; Pignon F; Nervo R; Zontone F; Rinaudo M
    Soft Matter; 2014 Jul; 10(25):4547-54. PubMed ID: 24817660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles.
    Marefat Seyedlar R; Nodehi A; Atai M; Imani M
    Carbohydr Polym; 2014 Jan; 99():257-63. PubMed ID: 24274504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical gels based on charge-driven bridging of nanoparticles by triblock copolymers.
    Lemmers M; Spruijt E; Akerboom S; Voets IK; van Aelst AC; Stuart MA; van der Gucht J
    Langmuir; 2012 Aug; 28(33):12311-8. PubMed ID: 22834713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism.
    Wang GH; Zhang LM
    J Phys Chem B; 2009 Mar; 113(9):2688-94. PubMed ID: 19708206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles.
    Kennedy JR; Kent KE; Brown JR
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():347-53. PubMed ID: 25579932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering.
    Chatterjee T; Nakatani AI; Adden R; Brackhagen M; Redwine D; Shen H; Li Y; Wilson T; Sammler RL
    Biomacromolecules; 2012 Oct; 13(10):3355-69. PubMed ID: 22994294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose.
    Fairclough JP; Yu H; Kelly O; Ryan AJ; Sammler RL; Radler M
    Langmuir; 2012 Jul; 28(28):10551-7. PubMed ID: 22694273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelation of hydroxyethyl cellulose aqueous solution induced by addition of colloidal silica nanoparticles.
    Gong T; Hou Y; Yang X; Guo Y
    Int J Biol Macromol; 2019 Aug; 134():547-556. PubMed ID: 31100393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions.
    Silva SM; Pinto FV; Antunes FE; Miguel MG; Sousa JJ; Pais AA
    J Colloid Interface Sci; 2008 Nov; 327(2):333-40. PubMed ID: 18804777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network dynamics in nanofilled polymers.
    Baeza GP; Dessi C; Costanzo S; Zhao D; Gong S; Alegria A; Colby RH; Rubinstein M; Vlassopoulos D; Kumar SK
    Nat Commun; 2016 Apr; 7():11368. PubMed ID: 27109062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological behavior of thermoreversible kappa-carrageenan/nanosilica gels.
    Daniel-da-Silva AL; Pinto F; Lopes-da-Silva JA; Trindade T; Goodfellow BJ; Gil AM
    J Colloid Interface Sci; 2008 Apr; 320(2):575-81. PubMed ID: 18279881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums.
    Grein-Iankovski A; Riegel-Vidotti IC; Simas-Tosin FF; Narayanan S; Leheny RL; Sandy AR
    Soft Matter; 2016 Nov; 12(46):9321-9329. PubMed ID: 27805235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel combination of DLS-optical microrheology and low frequency Raman spectroscopy to reveal underlying biopolymer self-assembly and gelation mechanisms.
    Amin S; Blake S; Kenyon SM; Kennel RC; Lewis EN
    J Chem Phys; 2014 Dec; 141(23):234201. PubMed ID: 25527928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.
    Ribeiro T; Fedorov A; Baleizão C; Farinha JP
    J Colloid Interface Sci; 2013 Jul; 401():14-22. PubMed ID: 23622686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels.
    Daniel-da-Silva AL; Lóio R; Lopes-da-Silva JA; Trindade T; Goodfellow BJ; Gil AM
    J Colloid Interface Sci; 2008 Aug; 324(1-2):205-11. PubMed ID: 18495143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.
    Xia Y; Larock RC
    Macromol Rapid Commun; 2011 Sep; 32(17):1331-7. PubMed ID: 25867899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology.
    Secchi E; Munarin F; Alaimo MD; Bosisio S; Buzzaccaro S; Ciccarella G; Vergaro V; Petrini P; Piazza R
    J Phys Condens Matter; 2014 Nov; 26(46):464106. PubMed ID: 25347466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices.
    Fatimi A; Tassin JF; Quillard S; Axelos MA; Weiss P
    Biomaterials; 2008 Feb; 29(5):533-43. PubMed ID: 17996292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.