BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24817701)

  • 1. Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage.
    Otero L; Romanelli-Cedrez L; Turanov AA; Gladyshev VN; Miranda-Vizuete A; Salinas G
    RNA; 2014 Jul; 20(7):1023-34. PubMed ID: 24817701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
    Bubenik JL; Miniard AC; Driscoll DM
    RNA Biol; 2014; 11(11):1402-13. PubMed ID: 25692238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins.
    Donovan J; Copeland PR
    BMC Evol Biol; 2009 Sep; 9():229. PubMed ID: 19744324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs.
    Copeland PR; Fletcher JE; Carlson BA; Hatfield DL; Driscoll DM
    EMBO J; 2000 Jan; 19(2):306-14. PubMed ID: 10637234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenocysteine insertion sequence binding protein 2L is implicated as a novel post-transcriptional regulator of selenoprotein expression.
    Donovan J; Copeland PR
    PLoS One; 2012; 7(4):e35581. PubMed ID: 22530054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2.
    Gupta M; Copeland PR
    J Biol Chem; 2007 Dec; 282(51):36797-807. PubMed ID: 17954931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel insight into the mechanism of mammalian selenoprotein synthesis.
    Kossinova O; Malygin A; Krol A; Karpova G
    RNA; 2013 Aug; 19(8):1147-58. PubMed ID: 23788723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of essential selenoproteins during development requires SECIS-binding protein 2-like.
    Kiledjian NT; Shah R; Vetick MB; Copeland PR
    Life Sci Alliance; 2022 May; 5(5):. PubMed ID: 35210313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2.
    Fletcher JE; Copeland PR; Driscoll DM; Krol A
    RNA; 2001 Oct; 7(10):1442-53. PubMed ID: 11680849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional control of selenoprotein biosynthesis.
    Seeher S; Mahdi Y; Schweizer U
    Curr Protein Pept Sci; 2012 Jun; 13(4):337-46. PubMed ID: 22708491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2.
    Copeland PR; Stepanik VA; Driscoll DM
    Mol Cell Biol; 2001 Mar; 21(5):1491-8. PubMed ID: 11238886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues.
    Zhang Y; Romero H; Salinas G; Gladyshev VN
    Genome Biol; 2006; 7(10):R94. PubMed ID: 17054778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular complexes mediate selenocysteine incorporation in vivo.
    Small-Howard A; Morozova N; Stoytcheva Z; Forry EP; Mansell JB; Harney JW; Carlson BA; Xu XM; Hatfield DL; Berry MJ
    Mol Cell Biol; 2006 Mar; 26(6):2337-46. PubMed ID: 16508009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli.
    Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B
    Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons.
    Chen YF; Lin HC; Chuang KN; Lin CH; Yen HS; Yeang CH
    PLoS Comput Biol; 2017 Feb; 13(2):e1005367. PubMed ID: 28178267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells.
    Novoselov SV; Lobanov AV; Hua D; Kasaikina MV; Hatfield DL; Gladyshev VN
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7857-62. PubMed ID: 17470795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function.
    Papp LV; Lu J; Striebel F; Kennedy D; Holmgren A; Khanna KK
    Mol Cell Biol; 2006 Jul; 26(13):4895-910. PubMed ID: 16782878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.