BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24817701)

  • 41. Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: a mechanism for eluding nonsense-mediated decay?
    de Jesus LA; Hoffmann PR; Michaud T; Forry EP; Small-Howard A; Stillwell RJ; Morozova N; Harney JW; Berry MJ
    Mol Cell Biol; 2006 Mar; 26(5):1795-805. PubMed ID: 16478999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals.
    Kinzy SA; Caban K; Copeland PR
    Nucleic Acids Res; 2005; 33(16):5172-80. PubMed ID: 16155186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain.
    Cheng Q; Arnér ESJ
    Methods Enzymol; 2022; 662():95-118. PubMed ID: 35101220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation.
    Howard MT; Copeland PR
    Biol Trace Elem Res; 2019 Nov; 192(1):18-25. PubMed ID: 31342342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec.
    Howard MT; Moyle MW; Aggarwal G; Carlson BA; Anderson CB
    RNA; 2007 Jun; 13(6):912-20. PubMed ID: 17456565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ribosome profiling of selenoproteins
    Zhao W; Bohleber S; Schmidt H; Seeher S; Howard MT; Braun D; Arndt S; Reuter U; Wende H; Birchmeier C; Fradejas-Villar N; Schweizer U
    J Biol Chem; 2019 Sep; 294(39):14185-14200. PubMed ID: 31350336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wobble decoding by the Escherichia coli selenocysteine insertion machinery.
    Xu J; Croitoru V; Rutishauser D; Cheng Q; Arnér ES
    Nucleic Acids Res; 2013 Nov; 41(21):9800-11. PubMed ID: 23982514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element.
    Korotkov KV; Novoselov SV; Hatfield DL; Gladyshev VN
    Mol Cell Biol; 2002 Mar; 22(5):1402-11. PubMed ID: 11839807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress.
    Papp LV; Lu J; Bolderson E; Boucher D; Singh R; Holmgren A; Khanna KK
    Antioxid Redox Signal; 2010 Apr; 12(7):797-808. PubMed ID: 19803747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues.
    Kryukov GV; Gladyshev VN
    Genes Cells; 2000 Dec; 5(12):1049-60. PubMed ID: 11168591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins.
    Fixsen SM; Howard MT
    J Mol Biol; 2010 Jun; 399(3):385-96. PubMed ID: 20417644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolving tRNA(Sec) for efficient canonical incorporation of selenocysteine.
    Thyer R; Robotham SA; Brodbelt JS; Ellington AD
    J Am Chem Soc; 2015 Jan; 137(1):46-9. PubMed ID: 25521771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficiency of mammalian selenocysteine incorporation.
    Mehta A; Rebsch CM; Kinzy SA; Fletcher JE; Copeland PR
    J Biol Chem; 2004 Sep; 279(36):37852-9. PubMed ID: 15229221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model for Sec incorporation with the regions upstream of the UGA Sec codon to play a key role.
    Goto C; Osaka T; Mizutani T
    Biofactors; 2001; 14(1-4):25-35. PubMed ID: 11568437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Methods to Biosynthesize Mammalian Selenocysteine-Containing Proteins in vitro].
    Varlamova EG; Novoselov SV
    Mol Biol (Mosk); 2016; 50(1):44-50. PubMed ID: 27028810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selenocysteine insertion sequence (SECIS)-binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80 S ribosomes.
    Caban K; Copeland PR
    J Biol Chem; 2012 Mar; 287(13):10664-10673. PubMed ID: 22308032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs.
    Hubert N; Walczak R; Carbon P; Krol A
    Nucleic Acids Res; 1996 Feb; 24(3):464-9. PubMed ID: 8602359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Biosyinthesis and mechanism of selenocysteine incorporation into synthesized proteins].
    Varlamova EG; Gol'tiaev MV; Novocelov SV; Novoselov VI; Fecenko EE
    Mol Biol (Mosk); 2013; 47(4):558-67. PubMed ID: 24466745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selenocysteine insertion directed by the 3'-UTR SECIS element in Escherichia coli.
    Su D; Li Y; Gladyshev VN
    Nucleic Acids Res; 2005; 33(8):2486-92. PubMed ID: 15863725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.