BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24817764)

  • 1. Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering.
    Mercado-Pagán AE; Kang Y; Ker DF; Park S; Yao J; Bishop J; Yang Y
    Eur Polym J; 2013 Oct; 49(10):3337-3349. PubMed ID: 24817764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable structure and linear viscoelastic properties of poly(glycerol adipate urethane)-based elastomeric composites for tissue regeneration.
    Gazińska MA; Krokos A
    J Mech Behav Biomed Mater; 2024 May; 153():106493. PubMed ID: 38484428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Biodegradable Composites: Thermal, Flammability, Moisture Absorption and Mechanical Properties of Natural Fibre-Reinforced Composites with Nano-Hydroxyapatite.
    Khalili P; Liu X; Zhao Z; Blinzler B
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30965666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of PLA/PCL/Nano-Hydroxyapatite (nHA) Biocomposites Prepared via Cold Isostatic Pressing.
    Solechan S; Suprihanto A; Widyanto SA; Triyono J; Fitriyana DF; Siregar JP; Cionita T
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.
    Tong SY; Wang Z; Lim PN; Wang W; Thian ES
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1149-1155. PubMed ID: 27772716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications.
    Rosenbalm TN; Teruel M; Day CS; Donati GL; Morykwas M; Argenta L; Kuthirummal N; Levi-Polyachenko N
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1366-73. PubMed ID: 26201533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair.
    Zhu Y; Wang Z; Li L; Gao D; Xu Q; Zhu Q; Zhang P
    J Mater Chem B; 2017 Nov; 5(44):8695-8706. PubMed ID: 32264263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Modification of Hydroxyapatite Nanofiber for Poly(Lactic Acid) Composites with Enhanced Mechanical Strength and Bioactivity.
    Ko HS; Lee S; Jho JY
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.
    Wang X; Zhao X; Zhang L; Wang W; Zhang J; He F; Yang J
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():765-771. PubMed ID: 28532091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Modified Natural Rubber on the Mechanical and Thermal Properties of Poly(Lactic Acid) and Its Composites with Nanoparticles from Biowaste.
    Injorhor P; Inphonlek S; Ruksakulpiwat Y; Ruksakulpiwat C
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of elastic nanocomposites for craniofacial contraction osteogenesis.
    Levi-Polyachenko N; Rosenbalm T; Kuthirummal N; Shelton J; Hardin W; Teruel M; Hobley E; Wang R; Day C; Narayanan V; David L; Wagner WD
    J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):407-16. PubMed ID: 24898435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.
    Han C; Wang Q; Song B; Li W; Wei Q; Wen S; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2017 Jul; 71():85-94. PubMed ID: 28267662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials.
    Ignatius AA; Wolf S; Augat P; Claes LE
    J Biomed Mater Res; 2001 Oct; 57(1):126-31. PubMed ID: 11416859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites.
    McManus AJ; Doremus RH; Siegel RW; Bizios R
    J Biomed Mater Res A; 2005 Jan; 72(1):98-106. PubMed ID: 15538759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.