These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24817764)

  • 41. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.
    Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK
    Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fused Deposition Modeling of Poly (lactic acid)/Macadamia Composites-Thermal, Mechanical Properties and Scaffolds.
    Song X; He W; Qin H; Yang S; Wen S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tailored degradation of biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium silicate/poly(lactide-co-glycolide) ternary composites: an in vitro study.
    Idaszek J; Zinn M; Obarzanek-Fojt M; Zell V; Swieszkowski W; Bruinink A
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4352-60. PubMed ID: 23910353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).
    Manavitehrani I; Fathi A; Wang Y; Maitz PK; Dehghani F
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22421-30. PubMed ID: 26376751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improvement of physico-chemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite.
    El-Meliegy E; Abu-Elsaad NI; El-Kady AM; Ibrahim MA
    Sci Rep; 2018 Aug; 8(1):12180. PubMed ID: 30111828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates.
    Tian Q; Liu H
    Nanotechnology; 2015 May; 26(17):175102. PubMed ID: 25854275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.
    Johnson I; Akari K; Liu H
    Nanotechnology; 2013 Sep; 24(37):375103. PubMed ID: 23975041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Experimental study of repairing femoral bone defects with nHA/RHLC/PLA scaffold composite with endothelial cells and osteoblasts in canines].
    Lü YM; Cheng LM; Pei GX; Cai Z; Pan L; Su J; Zhang KH; Guo LL; Yu QS; Guo YR
    Zhonghua Yi Xue Za Zhi; 2013 May; 93(17):1335-40. PubMed ID: 24029485
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
    Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P
    Biomatter; 2014; 4():e27664. PubMed ID: 24441389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers.
    Kasuga T; Ota Y; Nogami M; Abe Y
    Biomaterials; 2001 Jan; 22(1):19-23. PubMed ID: 11085379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair.
    Devin JE; Attawia MA; Laurencin CT
    J Biomater Sci Polym Ed; 1996; 7(8):661-9. PubMed ID: 8639475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.
    Liu C; Wong HM; Yeung KWK; Tjong SC
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974562
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Polycaprolactone Nanohydroxyapatite Composites with Tunable Degradability Suitable for Indirect Printing.
    Doyle SE; Henry L; McGennisken E; Onofrillo C; Bella CD; Duchi S; O'Connell CD; Pirogova E
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33477660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro analysis of a physiological strain sensor formulated from a PEDOT:PSS functionalized carbon nanotube-poly(glycerol sebacate urethane) composite.
    Tadayyon G; Krukiewicz K; Britton J; Larrañaga A; Vallejo-Giraldo C; Fernandez-Yague M; Guo Y; Orpella-Aceret G; Li L; Poudel A; Biggs MJP
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111857. PubMed ID: 33579489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications.
    Comeau PA; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.