These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2481780)

  • 1. Pharmacology of pentoxifylline in isolated canine arteries and veins.
    Hoeffner U; Aarhus LL; Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989 Dec; 14(6):899-907. PubMed ID: 2481780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of the antianginal drug nicorandil on canine arteries and veins.
    Morrison KJ; Flavahan NA; Vanhoutte PM
    J Cardiovasc Pharmacol; 1990 May; 15(5):791-8. PubMed ID: 1692940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB; Bond R; Gao Y; Illiano S; Junquero DC; Mombouli JV; Nagao T; Smart F; Vanhoutte PM
    J Cardiovasc Pharmacol; 1993; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of naftidrofuryl on adrenergic nerves, endothelium and smooth muscle in isolated canine blood vessels.
    Zander JF; Aarhus LL; Katusic ZS; Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1986 Dec; 239(3):760-7. PubMed ID: 3025417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of prostaglandin synthesis augment beta-adrenergic responsiveness in canine coronary arteries.
    Rubanyi G; Vanhoutte PM
    Circ Res; 1985 Jan; 56(1):117-25. PubMed ID: 2981646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective production of endothelium-derived nitric oxide in canine femoral veins.
    Miller VM
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H677-82. PubMed ID: 1679603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacology of bucindolol in isolated canine vascular smooth muscle.
    Rimele TJ; Aarhus LL; Lorenz RR; Rooke TW; Vanhoutte PM
    J Pharmacol Exp Ther; 1984 Nov; 231(2):317-25. PubMed ID: 6149305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitrate ester ITF 296 relaxes isolated canine arteries and veins.
    Desta B; Nakashima M; Vanhoutte PM; Boulanger CM
    J Cardiovasc Pharmacol; 1995; 26 Suppl 4():S53-8. PubMed ID: 8839227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity to endothelin in canine arteries and veins.
    Miller VM; Komori K; Burnett JC; Vanhoutte PM
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1127-31. PubMed ID: 2679147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Celiprolol has no direct or indirect relaxing effects in isolated arteries and veins.
    O'Rourke ST; Vanhoutte PM
    J Cardiovasc Pharmacol; 1990 May; 15(5):831-5. PubMed ID: 1692945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of cadralazine and its metabolite, ISF-2405, on contractions and the level of cytosolic Ca2+ in vascular smooth muscle.
    Mitsui M; Nakao K; Inukai T; Karaki H
    Eur J Pharmacol; 1990 Mar; 178(2):171-7. PubMed ID: 2328760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute impairment of endothelium-dependent relaxations to aggregating platelets following reperfusion injury in canine coronary arteries.
    Pearson PJ; Schaff HV; Vanhoutte PM
    Circ Res; 1990 Aug; 67(2):385-93. PubMed ID: 2115821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Ca2+ antagonist RO 40-5967 on endothelium-dependent responses of isolated arteries.
    Boulanger CM; Nakashima M; Olmos L; Joly G; Vanhoutte PM
    J Cardiovasc Pharmacol; 1994 Jun; 23(6):869-76. PubMed ID: 7523777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of perindoprilat on endothelium-dependent relaxations and contractions in isolated blood vessels.
    Kerth PA; Vanhoutte PM
    Am J Hypertens; 1991 Mar; 4(3 Pt 2):226S-234S. PubMed ID: 2043312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium.
    De Mey JG; Vanhoutte PM
    Circ Res; 1982 Oct; 51(4):439-47. PubMed ID: 7127680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins?
    Miller VM; Vanhoutte PM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1910-6. PubMed ID: 2513730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pertussis toxin reduces endothelium-dependent and independent responses to alpha-2- adrenergic stimulation in systemic canine arteries and veins.
    Miller VM; Flavahan NA; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Apr; 257(1):290-3. PubMed ID: 1850467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    Circ Res; 1984 Nov; 55(5):575-9. PubMed ID: 6488482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-removal decreases relaxations of canine coronary arteries caused by beta-adrenergic agonists and adenosine.
    Rubanyi G; Vanhoutte PM
    J Cardiovasc Pharmacol; 1985; 7(1):139-44. PubMed ID: 2580134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 15-lipoxygenase metabolites of arachidonic acid evoke contractions and relaxations in isolated canine arteries: role of thromboxane receptors, endothelial cells and cyclooxygenase.
    Van Diest MJ; Verbeuren TJ; Herman AG
    J Pharmacol Exp Ther; 1991 Jan; 256(1):194-203. PubMed ID: 1824864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.