These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24818131)

  • 1. Characterization of silk fibroin modified surface: a proteomic view of cellular response proteins induced by biomaterials.
    Yang MH; Yuan SS; Chung TW; Jong SB; Lu CY; Tsai WC; Chen WC; Lin PC; Chiang PW; Tyan YC
    Biomed Res Int; 2014; 2014():209469. PubMed ID: 24818131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the responses of cellular proteins induced by hyaluronic acid-modified surfaces utilizing a mass spectrometry-based profiling system: over-expression of CD36, CD44, CDK9, and PP2A.
    Yang MH; Jong SB; Lu CY; Lin YF; Chiang PW; Tyan YC; Chung TW
    Analyst; 2012 Nov; 137(21):4921-33. PubMed ID: 22910856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cell response to multiwalled carbon nanotube-incorporated regenerated silk fibroin films.
    Cho SY; Yun YS; Kim ES; Kim MS; Jin HJ
    J Nanosci Nanotechnol; 2011 Jan; 11(1):801-5. PubMed ID: 21446549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk fibroin coated TiO
    Saha S; Pramanik K; Biswas A
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109982. PubMed ID: 31546427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation.
    Park HS; Gong MS; Park JH; Moon SI; Wall IB; Kim HW; Lee JH; Knowles JC
    Acta Biomater; 2013 Nov; 9(11):8962-71. PubMed ID: 23892141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.
    Amornsudthiwat P; Mongkolnavin R; Kanokpanont S; Panpranot J; Wong CS; Damrongsakkul S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():579-86. PubMed ID: 23893032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells.
    Yang L; Yaseen M; Zhao X; Coffey P; Pan F; Wang Y; Xu H; Webster J; Lu JR
    Biomed Mater; 2015 Mar; 10(2):025003. PubMed ID: 25784671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatibility of a silk fibroin tubular scaffold.
    Wang J; Wei Y; Yi H; Liu Z; Sun D; Zhao H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():429-36. PubMed ID: 24268279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture.
    Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W
    Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties of silk fibroin films and their interaction with fibroblasts.
    Servoli E; Maniglio D; Motta A; Predazzer R; Migliaresi C
    Macromol Biosci; 2005 Dec; 5(12):1175-83. PubMed ID: 16315185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The surface modification of eguus asinus augment fibroblast adhesion and proliferation on silk fibroin materials].
    Lian X; Wang S; Zhu H; Gao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):806-10. PubMed ID: 20842849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications.
    Kandhasamy S; Arthi N; Arun RP; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K; Mo X; Huang C; He C; Wang H
    J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemocompatibility and cytocompatibility of the hirudin-modified silk fibroin.
    Sun D; Hao Y; Yang G; Wang J
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):556-62. PubMed ID: 24953970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization.
    Varshney N; Sahi AK; Poddar S; Mahto SK
    Int J Biol Macromol; 2020 Oct; 160():112-127. PubMed ID: 32422270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin nanofibers enhance cell adhesion of blood-derived fibroblast-like cells: A potential application for wound healing.
    Nikam VS; Punde DS; Bhandari RS
    Indian J Pharmacol; 2020; 52(4):306-312. PubMed ID: 33078732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing.
    Chouhan D; Chakraborty B; Nandi SK; Mandal BB
    Acta Biomater; 2017 Jan; 48():157-174. PubMed ID: 27746359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining early adhesion of cells on polysaccharides/PCL surfaces by a quartz crystal microbalance.
    Chung TW; Tyan YC; Lee RH; Ho CW
    J Mater Sci Mater Med; 2012 Dec; 23(12):3067-73. PubMed ID: 22968597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.