These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 24818478)
41. Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Ahmed H; Tjaden B; Hensel R; Siebers B Biochem Soc Trans; 2004 Apr; 32(Pt 2):303-4. PubMed ID: 15046594 [TBL] [Abstract][Full Text] [Related]
42. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway. Evans SE; Franks AE; Bergman ME; Sethna NS; Currie MA; Phillips MA Nat Commun; 2024 Feb; 15(1):1102. PubMed ID: 38321044 [TBL] [Abstract][Full Text] [Related]
43. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1. Garg S; Clomburg JM; Gonzalez R J Ind Microbiol Biotechnol; 2018 Jun; 45(6):379-391. PubMed ID: 29675615 [TBL] [Abstract][Full Text] [Related]
44. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Strom T; Ferenci T; Quayle JR Biochem J; 1974 Dec; 144(3):465-76. PubMed ID: 4377654 [TBL] [Abstract][Full Text] [Related]
45. [Homo- and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z]. Mustakhimov II; But SY; Reshetnikov AS; Khmelenina VN; Trotsenko YA Prikl Biokhim Mikrobiol; 2016; 52(3):279-86. PubMed ID: 29509383 [TBL] [Abstract][Full Text] [Related]
47. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
48. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Ronimus RS; Morgan HW Archaea; 2003 Oct; 1(3):199-221. PubMed ID: 15803666 [TBL] [Abstract][Full Text] [Related]
49. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Kalyuzhnaya MG; Khmelenina V; Eshinimaev B; Sorokin D; Fuse H; Lidstrom M; Trotsenko Y Int J Syst Evol Microbiol; 2008 Mar; 58(Pt 3):591-6. PubMed ID: 18319461 [TBL] [Abstract][Full Text] [Related]
50. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Henard CA; Smith H; Dowe N; Kalyuzhnaya MG; Pienkos PT; Guarnieri MT Sci Rep; 2016 Feb; 6():21585. PubMed ID: 26902345 [TBL] [Abstract][Full Text] [Related]
51. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Fu Y; Li Y; Lidstrom M Metab Eng; 2017 Jul; 42():43-51. PubMed ID: 28552747 [TBL] [Abstract][Full Text] [Related]
52. Enhancing Sesquiterpenoid Production from Methane via Synergy of the Methylerythritol Phosphate Pathway and a Short-Cut Route to 1-Deoxy-D-xylulose 5-Phosphate in Methanotrophic Bacteria. Nguyen AD; Pham DN; Chau THT; Lee EY Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34200225 [TBL] [Abstract][Full Text] [Related]
53. Rare Earth Elements Alter Redox Balance in Akberdin IR; Collins DA; Hamilton R; Oshchepkov DY; Shukla AK; Nicora CD; Nakayasu ES; Adkins JN; Kalyuzhnaya MG Front Microbiol; 2018; 9():2735. PubMed ID: 30542328 [No Abstract] [Full Text] [Related]
54. Genome-scale revealing the central metabolic network of the fast growing methanotroph Methylomonas sp. ZR1. Guo W; Li Y; He R; Chen W; Gao F; Li D; Liao X World J Microbiol Biotechnol; 2021 Jan; 37(2):29. PubMed ID: 33452942 [TBL] [Abstract][Full Text] [Related]
55. Detection and classification of atmospheric methane oxidizing bacteria in soil. Bull ID; Parekh NR; Hall GH; Ineson P; Evershed RP Nature; 2000 May; 405(6783):175-8. PubMed ID: 10821271 [TBL] [Abstract][Full Text] [Related]
56. Enzymes of an alternative pathway of glucose metabolism in obligate methanotrophs. Rozova ON; Ekimova GA; Molochkov NV; Reshetnikov AS; Khmelenina VN; Mustakhimov II Sci Rep; 2021 Apr; 11(1):8795. PubMed ID: 33888823 [TBL] [Abstract][Full Text] [Related]
57. Evolution of carbohydrate metabolic pathways. Romano AH; Conway T Res Microbiol; 1996; 147(6-7):448-55. PubMed ID: 9084754 [TBL] [Abstract][Full Text] [Related]
58. Engineering type I methanotrophic bacteria as novel platform for sustainable production of 3-hydroxybutyrate and biodegradable polyhydroxybutyrate from methane and xylose. Hoang Trung Chau T; Duc Nguyen A; Lee EY Bioresour Technol; 2022 Nov; 363():127898. PubMed ID: 36108944 [TBL] [Abstract][Full Text] [Related]
59. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Kalyuzhnaya MG; Yang S; Rozova ON; Smalley NE; Clubb J; Lamb A; Gowda GA; Raftery D; Fu Y; Bringel F; Vuilleumier S; Beck DA; Trotsenko YA; Khmelenina VN; Lidstrom ME Nat Commun; 2013; 4():2785. PubMed ID: 24302011 [TBL] [Abstract][Full Text] [Related]
60. Characterization of Two Recombinant 3-Hexulose-6-Phosphate Synthases from the Halotolerant Obligate Methanotroph Methylomicrobium alcaliphilum 20Z. Rozova ON; But SY; Khmelenina VN; Reshetnikov AS; Mustakhimov II; Trotsenko YA Biochemistry (Mosc); 2017 Feb; 82(2):176-185. PubMed ID: 28320301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]