BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24818480)

  • 41. Lethal mutations in the isoprenoid pathway of Salmonella enterica.
    Cornish RM; Roth JR; Poulter CD
    J Bacteriol; 2006 Feb; 188(4):1444-50. PubMed ID: 16452427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
    Ajikumar PK; Xiao WH; Tyo KE; Wang Y; Simeon F; Leonard E; Mucha O; Phon TH; Pfeifer B; Stephanopoulos G
    Science; 2010 Oct; 330(6000):70-4. PubMed ID: 20929806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites.
    Burlat V; Oudin A; Courtois M; Rideau M; St-Pierre B
    Plant J; 2004 Apr; 38(1):131-41. PubMed ID: 15053766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering Escherichia coli to convert acetic acid to β-caryophyllene.
    Yang J; Nie Q
    Microb Cell Fact; 2016 May; 15():74. PubMed ID: 27149950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining De Ley-Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from D-galactose.
    Ramos KR; Valdehuesa KN; Liu H; Nisola GM; Lee WK; Chung WJ
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2505-13. PubMed ID: 24928200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploration of the 1-deoxy-d-xylulose 5-phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system.
    Kudoh K; Kubota G; Fujii R; Kawano Y; Ihara M
    J Biosci Bioeng; 2017 Mar; 123(3):300-307. PubMed ID: 27856234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli.
    Newman JD; Marshall J; Chang M; Nowroozi F; Paradise E; Pitera D; Newman KL; Keasling JD
    Biotechnol Bioeng; 2006 Nov; 95(4):684-91. PubMed ID: 16878333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity.
    Bitok JK; Meyers CF
    ACS Chem Biol; 2012 Oct; 7(10):1702-10. PubMed ID: 22839733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production.
    Li L; Wang X; Li X; Shi H; Wang F; Zhang Y; Li X
    J Agric Food Chem; 2019 Jun; 67(23):6523-6531. PubMed ID: 31117507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots.
    Yang D; Ma P; Liang X; Wei Z; Liang Z; Liu Y; Liu F
    Physiol Plant; 2012 Oct; 146(2):173-83. PubMed ID: 22356467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probable novel MEP pathway inhibitor and its binding protein, IspG.
    Nakagawa K; Takada K; Imamura N
    Biosci Biotechnol Biochem; 2013; 77(7):1449-54. PubMed ID: 23832336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum.
    Singh VK; Ghosh I
    FEBS Lett; 2013 Sep; 587(17):2806-17. PubMed ID: 23816706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors.
    Lichtenthaler HK
    Biochem Soc Trans; 2000 Dec; 28(6):785-9. PubMed ID: 11171208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation.
    Huchelmann A; Gastaldo C; Veinante M; Zeng Y; Heintz D; Tritsch D; Schaller H; Rohmer M; Bach TJ; Hemmerlin A
    Plant Physiol; 2014 Feb; 164(2):935-50. PubMed ID: 24367019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Farnesol-mediated shift in the metabolic origin of prenyl groups used for protein prenylation in plants.
    Huchelmann A; Brahim MS; Gerber E; Tritsch D; Bach TJ; Hemmerlin A
    Biochimie; 2016 Aug; 127():95-102. PubMed ID: 27138105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis.
    Rodríguez-Concepción M; Boronat A
    Curr Opin Plant Biol; 2015 Jun; 25():17-22. PubMed ID: 25909859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli.
    King JR; Woolston BM; Stephanopoulos G
    ACS Synth Biol; 2017 Jul; 6(7):1416-1426. PubMed ID: 28375628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium.
    Orsi E; Folch PL; Monje-López VT; Fernhout BM; Turcato A; Kengen SWM; Eggink G; Weusthuis RA
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1179-1190. PubMed ID: 31187318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.