BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 24818599)

  • 1. Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling effects?
    Armstrong J; Bresme F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12307-16. PubMed ID: 24818599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.
    Römer F; Wang Z; Wiegand S; Bresme F
    J Phys Chem B; 2013 Jul; 117(27):8209-22. PubMed ID: 23758489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations.
    Bresme F; Armstrong J
    J Chem Phys; 2014 Jan; 140(1):016102. PubMed ID: 24410242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: a comparison with experiments.
    Perronace A; Ciccotti G; Leroy F; Fuchs AH; Rousseau B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):031201. PubMed ID: 12366100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.
    Matsubara H; Kikugawa G; Ishikiriyama M; Yamashita S; Ohara T
    J Chem Phys; 2017 Sep; 147(11):114104. PubMed ID: 28938811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture.
    Hafskjold B
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):4. PubMed ID: 28091930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture.
    Miller NA; Daivis PJ; Snook IK; Todd BD
    J Chem Phys; 2013 Oct; 139(14):144504. PubMed ID: 24116632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing the Heat Conductivity of Fluids from Density Fluctuations.
    Cheng B; Frenkel D
    Phys Rev Lett; 2020 Sep; 125(13):130602. PubMed ID: 33034481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of thermal conductivity in classical water models.
    Sirk TW; Moore S; Brown EF
    J Chem Phys; 2013 Feb; 138(6):064505. PubMed ID: 23425477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics.
    Zhou Y; Anglin B; Strachan A
    J Chem Phys; 2007 Nov; 127(18):184702. PubMed ID: 18020653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing thermal conductivity models with equilibrium molecular dynamics simulations of the one-component plasma.
    Scheiner B; Baalrud SD
    Phys Rev E; 2019 Oct; 100(4-1):043206. PubMed ID: 31770988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water under temperature gradients: polarization effects and microscopic mechanisms of heat transfer.
    Muscatello J; Römer F; Sala J; Bresme F
    Phys Chem Chem Phys; 2011 Nov; 13(44):19970-8. PubMed ID: 21989634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal diffusion and partial molar enthalpy variations of n-butane in silicalite-1.
    Inzoli I; Simon JM; Bedeaux D; Kjelstrup S
    J Phys Chem B; 2008 Nov; 112(47):14937-51. PubMed ID: 18973376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Diffusion in Binary Mixtures: Transient Behavior and Transport Coefficients from Equilibrium and Nonequilibrium Molecular Dynamics.
    Bonella S; Ferrario M; Ciccotti G
    Langmuir; 2017 Oct; 33(42):11281-11290. PubMed ID: 28915729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties of 2F <==> F2 in a temperature gradient as studied by molecular dynamics simulations.
    Xu J; Kjelstrup S; Bedeaux D; Simon JM
    Phys Chem Chem Phys; 2007 Feb; 9(8):969-81. PubMed ID: 17301887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous heat transport in binary hard-sphere gases.
    Moir C; Lue L; Gale JD; Raiteri P; Bannerman MN
    Phys Rev E; 2019 Mar; 99(3-1):030102. PubMed ID: 30999486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Thermal Conductivities of Rubbers by MD Simulations-New Insights.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.