These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24818706)

  • 21. Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth.
    Ek M; Filler MA
    Acc Chem Res; 2018 Jan; 51(1):118-126. PubMed ID: 29185707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.
    Pinion CW; Nenon DP; Christesen JD; Cahoon JF
    ACS Nano; 2014 Jun; 8(6):6081-8. PubMed ID: 24815744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.
    Kumar RR; Rao KN; Rajanna K; Phani AR
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5485-90. PubMed ID: 24758054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalyzed oxidation for nanowire growth.
    Tai K; Sun K; Huang B; Dillon SJ
    Nanotechnology; 2014 Apr; 25(14):145603. PubMed ID: 24633154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.
    Nimmatoori P; Zhang Q; Dickey EC; Redwing JM
    Nanotechnology; 2009 Jan; 20(2):025607. PubMed ID: 19417276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution-liquid-solid growth of semiconductor nanowires.
    Wang F; Dong A; Sun J; Tang R; Yu H; Buhro WE
    Inorg Chem; 2006 Sep; 45(19):7511-21. PubMed ID: 16961336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sawtooth faceting in silicon nanowires.
    Ross FM; Tersoff J; Reuter MC
    Phys Rev Lett; 2005 Sep; 95(14):146104. PubMed ID: 16241673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essential role of catalyst in vapor-liquid-solid growth of compounds.
    Suzuki M; Hidaka Y; Yanagida T; Klamchuen A; Kanai M; Kawai T; Kai S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061606. PubMed ID: 21797379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism.
    He C; Wang X; Wu Q; Hu Z; Ma Y; Fu J; Chen Y
    J Am Chem Soc; 2010 Apr; 132(13):4843-7. PubMed ID: 20225864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring Nucleation at Two Interfaces Enables Single Crystalline NiO Nanowires via Vapor-Liquid-Solid Route.
    Nagashima K; Yoshida H; Klamchuen A; Kanai M; Meng G; Zhuge F; He Y; Anzai H; Zhu Z; Suzuki M; Boudot M; Takeda S; Yanagida T
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27892-27899. PubMed ID: 27670883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires.
    Oh SH; Chisholm MF; Kauffmann Y; Kaplan WD; Luo W; Rühle M; Scheu C
    Science; 2010 Oct; 330(6003):489-93. PubMed ID: 20966248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.
    Cui H; Lü YY; Yang GW; Chen YM; Wang CX
    Nano Lett; 2015 May; 15(5):3640-5. PubMed ID: 25928836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device.
    Kaur N; Comini E; Zappa D; Poli N; Sberveglieri G
    Nanotechnology; 2016 May; 27(20):205701. PubMed ID: 27053627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.
    Bhatta UM; Rath A; Dash JK; Ghatak J; Yi-Feng L; Liu CP; Satyam PV
    Nanotechnology; 2009 Nov; 20(46):465601. PubMed ID: 19843987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled synthesis of ultrathin ZnO nanowires using micellar gold nanoparticles as catalyst templates.
    Yin H; Wang Q; Geburt S; Milz S; Ruttens B; Degutis G; D'Haen J; Shan L; Punniyakoti S; D'Olieslaeger M; Wagner P; Ronning C; Boyen HG
    Nanoscale; 2013 Aug; 5(15):7046-53. PubMed ID: 23807664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism.
    Noor Mohammad S
    J Chem Phys; 2009 Dec; 131(22):224702. PubMed ID: 20001071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time observation of collector droplet oscillations during growth of straight nanowires.
    Kolíbal M; Vystavěl T; Varga P; Šikola T
    Nano Lett; 2014; 14(4):1756-61. PubMed ID: 24528181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.