These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24818794)

  • 1. Motor adaptation to prosthetic cycling in people with trans-tibial amputation.
    Lee Childers W; Prilutsky BI; Gregor RJ
    J Biomech; 2014 Jul; 47(10):2306-13. PubMed ID: 24818794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW; Salami F; De Asha AR; Block J; Putz C; Wolf SI; Alimusaj M
    Gait Posture; 2018 Jul; 64():174-180. PubMed ID: 29913354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetrical kinematics does not imply symmetrical kinetics in people with transtibial amputation using cycling model.
    Childers WL; Kogler GF
    J Rehabil Res Dev; 2014; 51(8):1243-54. PubMed ID: 25629527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    Gregersen CS; Hull ML; Hakansson NA
    J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle activity patterns altered during pedaling at different body orientations.
    Brown DA; Kautz SA; Dairaghi CA
    J Biomech; 1996 Oct; 29(10):1349-56. PubMed ID: 8884480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
    Blumentritt S; Schmalz T; Jarasch R; Schneider M
    Prosthet Orthot Int; 1999 Dec; 23(3):231-8. PubMed ID: 10890598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Back squat mechanics in persons with a unilateral transtibial amputation: A case study.
    Cooper KJ; Fain A; Lee Childers W
    Prosthet Orthot Int; 2022 Feb; 46(1):50-53. PubMed ID: 34789708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The motor and the brake of the trailing leg in human walking: transtibial amputation limits ankle-knee torque covariation.
    Toney-Bolger ME; Chang YH
    Exp Brain Res; 2023 Jan; 241(1):161-174. PubMed ID: 36411328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of kinetics, kinematics, and electromyography during single-leg assisted and unassisted cycling.
    Bini RR; Jacques TC; Lanferdini FJ; Vaz MA
    J Strength Cond Res; 2015 Jun; 29(6):1534-41. PubMed ID: 25872025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface.
    Huang S; Ferris DP
    J Neuroeng Rehabil; 2012 Aug; 9():55. PubMed ID: 22882763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals.
    Momeni K; Faghri PD; Evans M
    J Neuroeng Rehabil; 2014 Oct; 11():146. PubMed ID: 25325920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation.
    Underwood HA; Tokuno CD; Eng JJ
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):609-16. PubMed ID: 15234485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of force production in persons with unilateral transtibial amputation during cycling.
    Childers WL; Gregor RJ
    Prosthet Orthot Int; 2011 Dec; 35(4):373-8. PubMed ID: 21998095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.