These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24818806)

  • 41. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis.
    Borton AJ; Frederick JP; Datto MB; Wang XF; Weinstein RS
    J Bone Miner Res; 2001 Oct; 16(10):1754-64. PubMed ID: 11585338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of gap junction, hemichannels, and connexin 43 in mineralizing in response to intermittent and continuous application of parathyroid hormone.
    Cherian PP; Xia X; Jiang JX
    Cell Commun Adhes; 2008 May; 15(1):43-54. PubMed ID: 18649177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors.
    Ransjö M; Sahli J; Lie A
    Biochem Biophys Res Commun; 2003 Apr; 303(4):1179-85. PubMed ID: 12684060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading.
    Zhao D; Riquelme MA; Guda T; Tu C; Xu H; Gu S; Jiang JX
    Elife; 2022 Feb; 11():. PubMed ID: 35132953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gap junctional regulation of signal transduction in bone cells.
    Buo AM; Stains JP
    FEBS Lett; 2014 Apr; 588(8):1315-21. PubMed ID: 24486014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellular communications in bone homeostasis and repair.
    Nakahama K
    Cell Mol Life Sci; 2010 Dec; 67(23):4001-9. PubMed ID: 20694737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of geranylgeranoic acid in bone: induction of osteoblast differentiation and inhibition of osteoclast formation.
    Wang X; Wu J; Shidoji Y; Muto Y; Ohishi N; Yagi K; Ikegami S; Shinki T; Udagawa N; Suda T; Ishimi Y
    J Bone Miner Res; 2002 Jan; 17(1):91-100. PubMed ID: 11771673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Connexin 43 channels are essential for normal bone structure and osteocyte viability.
    Xu H; Gu S; Riquelme MA; Burra S; Callaway D; Cheng H; Guda T; Schmitz J; Fajardo RJ; Werner SL; Zhao H; Shang P; Johnson ML; Bonewald LF; Jiang JX
    J Bone Miner Res; 2015 Mar; 30(3):436-48. PubMed ID: 25270829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells.
    Lo CW; Cohen MF; Huang GY; Lazatin BO; Patel N; Sullivan R; Pauken C; Park SM
    Dev Genet; 1997; 20(2):119-32. PubMed ID: 9144923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone-resorbing osteoclasts contain gap-junctional connexin-43.
    Ilvesaro J; Väänänen K; Tuukkanen J
    J Bone Miner Res; 2000 May; 15(5):919-26. PubMed ID: 10804022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomechanical and molecular regulation of bone remodeling.
    Robling AG; Castillo AB; Turner CH
    Annu Rev Biomed Eng; 2006; 8():455-98. PubMed ID: 16834564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Static and dynamic osteogenesis.
    Marotti G
    Ital J Anat Embryol; 2010; 115(1-2):123-6. PubMed ID: 21073001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.
    Martin TJ; Ng KW
    J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects.
    Blair HC; Zaidi M; Huang CL; Sun L
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):401-15. PubMed ID: 18710437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Soluble silica stimulates osteogenic differentiation and gap junction communication in human dental follicle cells.
    Uribe P; Johansson A; Jugdaohsingh R; Powell JJ; Magnusson C; Davila M; Westerlund A; Ransjö M
    Sci Rep; 2020 Jun; 10(1):9923. PubMed ID: 32555274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of genetically modified mouse models to the elucidation of bone physiology.
    Thomas T; Lafage-Proust MH
    Rev Rhum Engl Ed; 1999 Dec; 66(12):728-35. PubMed ID: 10649609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overview of skeletal development.
    Kobayashi T; Kronenberg HM
    Methods Mol Biol; 2014; 1130():3-12. PubMed ID: 24482161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of osteoclastogenesis by gap junction communication.
    Matemba SF; Lie A; Ransjö M
    J Cell Biochem; 2006 Oct; 99(2):528-37. PubMed ID: 16639710
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption.
    Sun L; Iqbal J; Dolgilevich S; Yuen T; Wu XB; Moonga BS; Adebanjo OA; Bevis PJ; Lund F; Huang CL; Blair HC; Abe E; Zaidi M
    FASEB J; 2003 Mar; 17(3):369-75. PubMed ID: 12631576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Histone deacetylases in control of skeletogenesis.
    Westendorf JJ
    J Cell Biochem; 2007 Oct; 102(2):332-40. PubMed ID: 17661352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.