These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24818840)

  • 1. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide.
    Peers C; Boyle JP; Scragg JL; Dallas ML; Al-Owais MM; Hettiarachichi NT; Elies J; Johnson E; Gamper N; Steele DS
    Br J Pharmacol; 2015 Mar; 172(6):1546-56. PubMed ID: 24818840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium.
    Peers C; Steele DS
    J Mol Cell Cardiol; 2012 Feb; 52(2):359-65. PubMed ID: 21640728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channels as target effectors for carbon monoxide.
    Peers C
    Exp Physiol; 2011 Sep; 96(9):836-9. PubMed ID: 21551266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system.
    Ingi T; Cheng J; Ronnett GV
    Neuron; 1996 Apr; 16(4):835-42. PubMed ID: 8608001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasodilatory effect of formaldehyde via the NO/cGMP pathway and the regulation of expression of K
    Zhao Y; Ge J; Li X; Guo Q; Zhu Y; Song J; Zhang L; Ding S; Yang X; Li R
    Toxicol Lett; 2019 Sep; 312():55-64. PubMed ID: 30974163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels.
    Fischmeister R; Castro L; Abi-Gerges A; Rochais F; Vandecasteele G
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):136-43. PubMed ID: 15927494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism for CO regulation of ion channels.
    Kapetanaki SM; Burton MJ; Basran J; Uragami C; Moody PCE; Mitcheson JS; Schmid R; Davies NW; Dorlet P; Vos MH; Storey NM; Raven E
    Nat Commun; 2018 Mar; 9(1):907. PubMed ID: 29500353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and carbon monoxide activate locus coeruleus neurons through a cGMP-dependent protein kinase: involvement of a nonselective cationic channel.
    Pineda J; Kogan JH; Aghajanian GK
    J Neurosci; 1996 Feb; 16(4):1389-99. PubMed ID: 8778290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species.
    Scragg JL; Dallas ML; Wilkinson JA; Varadi G; Peers C
    J Biol Chem; 2008 Sep; 283(36):24412-9. PubMed ID: 18596041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells.
    Wang R; Wu L; Wang Z
    Pflugers Arch; 1997 Jul; 434(3):285-91. PubMed ID: 9178628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a cyclic guanosine monophosphate-dependent, carbon monoxide-mediated, signaling system in the regulation of TNF-alpha production by human pulmonary macrophages.
    Arias-Díaz J; Vara E; García C; Villa N; Balibrea JL
    Arch Surg; 1995 Dec; 130(12):1287-93. PubMed ID: 7492276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of cGMP-mediated smooth muscle relaxation.
    Carvajal JA; Germain AM; Huidobro-Toro JP; Weiner CP
    J Cell Physiol; 2000 Sep; 184(3):409-20. PubMed ID: 10911373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological redox signalling and regulation of ion channels: implications for pulmonary hypertension.
    Ward JPT
    Exp Physiol; 2017 Sep; 102(9):1078-1082. PubMed ID: 28004868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide.
    Leinders-Zufall T; Shepherd GM; Zufall F
    J Neurophysiol; 1995 Oct; 74(4):1498-508. PubMed ID: 8989388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement.
    Roderique JD; Josef CS; Feldman MJ; Spiess BD
    Toxicology; 2015 Aug; 334():45-58. PubMed ID: 25997893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarization-activated ion channels as targets for nitric oxide signalling in deep cerebellar nuclei.
    Wilson GW; Garthwaite J
    Eur J Neurosci; 2010 Jun; 31(11):1935-45. PubMed ID: 20529121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon monoxide - beyond toxicity?
    Stucki D; Stahl W
    Toxicol Lett; 2020 Oct; 333():251-260. PubMed ID: 32860873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of synaptic and channel activities in the respiratory network of the mice by NO/cGMP signalling pathways.
    Mironov SL; Langohr K
    Brain Res; 2007 Jan; 1130(1):73-82. PubMed ID: 17169346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transduction and ion channels in guard cells.
    MacRobbie EA
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1475-88. PubMed ID: 9800209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.