These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24818998)
41. Genetic Basis Underlying Rapid Evolution of an Introduced Insect Ophraella communa (Coleoptera: Chrysomelidae): Heritability of Photoperiodic Response. Tanaka K; Murata K Environ Entomol; 2017 Feb; 46(1):167-173. PubMed ID: 28177078 [No Abstract] [Full Text] [Related]
42. Influence of temperature on the photoperiodic time measurement and on the maternal induction of diapause in Trichogramma telengai: the separation of the two effects. Ya Reznik S; Voinovich ND J Insect Physiol; 2024 Jun; 155():104654. PubMed ID: 38796055 [TBL] [Abstract][Full Text] [Related]
43. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Bean DW; Dudley TL; Keller JC Environ Entomol; 2007 Feb; 36(1):15-25. PubMed ID: 17349111 [TBL] [Abstract][Full Text] [Related]
44. Effects of constant and changing temperature conditions on diapause induction in Helicoverpa armigera (Lepidoptera: Noctuidae). Mironidis GK; Savopoulou-Soultani M Bull Entomol Res; 2012 Apr; 102(2):139-47. PubMed ID: 21892980 [TBL] [Abstract][Full Text] [Related]
45. Multigenerational maternal inhibition of prepupal diapause in two Trichogramma species (Hymenoptera: Trichogrammatidae). Reznik SY; Samartsev KG J Insect Physiol; 2015 Oct; 81():14-20. PubMed ID: 26116765 [TBL] [Abstract][Full Text] [Related]
46. Artificial selection for responsiveness to photoperiodic change alters the response to stationary photoperiods in maternal induction of egg diapause in the rice leaf bug Trigonotylus caelestialium. Shintani Y J Insect Physiol; 2009 Sep; 55(9):818-24. PubMed ID: 19482029 [TBL] [Abstract][Full Text] [Related]
47. Comparative Studies of Reproductive Diapause in North American Populations of Three Hippodamia Species (Coleoptera: Coccinellidae). Obrycki JJ Environ Entomol; 2020 Oct; 49(5):1164-1170. PubMed ID: 32860040 [TBL] [Abstract][Full Text] [Related]
48. Geographic Variation of Diapause and Sensitive Stages of Photoperiodic Response in Laodelphax striatellus Fallén (Hemiptera: Delphacidae). Hou YY; Xu LZ; Wu Y; Wang P; Shi JJ; Zhai BP J Insect Sci; 2016; 16(1):. PubMed ID: 26839318 [TBL] [Abstract][Full Text] [Related]
49. Adaptive significance of precocious pupation in the bean blister beetle, Epicauta gorhami (Coleoptera: Meloidae), a hypermetamorphic insect. Shintani Y; Terao M; Tanaka S J Insect Physiol; 2017 May; 99():107-112. PubMed ID: 28365384 [TBL] [Abstract][Full Text] [Related]
50. Geographic variation in critical photoperiod for diapause induction and its temperature dependence in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Gomi T Oecologia; 1997 Jul; 111(2):160-165. PubMed ID: 28307989 [TBL] [Abstract][Full Text] [Related]
51. A de novo transcriptome and valid reference genes for quantitative real-time PCR in Colaphellus bowringi. Tan QQ; Zhu L; Li Y; Liu W; Ma WH; Lei CL; Wang XP PLoS One; 2015; 10(2):e0118693. PubMed ID: 25692689 [TBL] [Abstract][Full Text] [Related]
52. Association between gut microbiota and diapause preparation in the cabbage beetle: a new perspective for studying insect diapause. Liu W; Li Y; Guo S; Yin H; Lei CL; Wang XP Sci Rep; 2016 Dec; 6():38900. PubMed ID: 27934967 [TBL] [Abstract][Full Text] [Related]
53. Dominant and recessive inheritance patterns of diapause in the two-spotted spider mite Tetranychus urticae. Kawakami Y; Numata H; Ito K; Goto SG J Hered; 2010; 101(1):20-5. PubMed ID: 19846476 [TBL] [Abstract][Full Text] [Related]
54. Quantitative short-day photoperiodic response in larval development and its adaptive significance in an adult-overwintering cerambycid beetle, Phytoecia rufiventris. Shintani Y J Insect Physiol; 2011 Jul; 57(7):1053-9. PubMed ID: 21616076 [TBL] [Abstract][Full Text] [Related]
55. Grandmaternal temperature effect on diapause induction in Trichogramma telengai (Hymenoptera: Trichogrammatidae). Reznik SY; Voinovich ND; Samartsev KG J Insect Physiol; 2020 Jul; 124():104072. PubMed ID: 32497531 [TBL] [Abstract][Full Text] [Related]
56. Dynamics of Supercooling Ability and Cold Tolerance of the Alder Beetle (Coleoptera: Chrysomelidae). Hiiesaar K; Kaart T; Williams IH; Luik A; Metspalu L; Ploomi A; Kruus E; Jõgar K; Mänd M Environ Entomol; 2018 Aug; 47(4):1024-1029. PubMed ID: 29850836 [TBL] [Abstract][Full Text] [Related]
57. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly. Yamaguchi K; Goto SG J Biol Rhythms; 2019 Jun; 34(3):293-306. PubMed ID: 30966851 [TBL] [Abstract][Full Text] [Related]
58. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Piiroinen S; Lindström L Oecologia; 2014 Sep; 176(1):57-68. PubMed ID: 25012598 [TBL] [Abstract][Full Text] [Related]
59. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage? Hodkova M J Insect Physiol; 2015 Jun; 77():39-44. PubMed ID: 25891916 [TBL] [Abstract][Full Text] [Related]
60. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa decemlineata, under field conditions using molecular biomarkers. Yocum GD; Rinehart JP; Larson ML J Insect Physiol; 2011 May; 57(5):645-52. PubMed ID: 21075113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]