These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 2481916)

  • 1. Prediction of surface loops of protein-folds from multiple alignments of homologous sequences.
    Patthy L
    Acta Biochim Biophys Hung; 1989; 24(1-2):3-13. PubMed ID: 2481916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing motif correlations in proteins.
    Horng JT; Huang HD; Wang SH; Chen MY; Huang SL; Hwang JK
    J Comput Chem; 2003 Dec; 24(16):2032-43. PubMed ID: 14531057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive combinatorial algorithm for multiple structural alignments: application to distantly related proteins.
    Ochagavía ME; Wodak S
    Proteins; 2004 May; 55(2):436-54. PubMed ID: 15048834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the conformation of proteins from sequences. Progress and future progress.
    Benner SA
    J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A symmetric-iterated multiple alignment of protein sequences.
    Brocchieri L; Karlin S
    J Mol Biol; 1998 Feb; 276(1):249-64. PubMed ID: 9514731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving protein secondary structure prediction with aligned homologous sequences.
    Di Francesco V; Garnier J; Munson PJ
    Protein Sci; 1996 Jan; 5(1):106-13. PubMed ID: 8771202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurring local sequence motifs in proteins.
    Han KF; Baker D
    J Mol Biol; 1995 Aug; 251(1):176-87. PubMed ID: 7643386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From analysis of protein structural alignments toward a novel approach to align protein sequences.
    Sunyaev SR; Bogopolsky GA; Oleynikova NV; Vlasov PK; Finkelstein AV; Roytberg MA
    Proteins; 2004 Feb; 54(3):569-82. PubMed ID: 14748004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein homology detection and fold inference through multiple alignment entropy profiles.
    Sánchez-Flores A; Pérez-Rueda E; Segovia L
    Proteins; 2008 Jan; 70(1):248-56. PubMed ID: 17671981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized affine gap costs for protein sequence alignment.
    Altschul SF
    Proteins; 1998 Jul; 32(1):88-96. PubMed ID: 9672045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments.
    Chang MS; Benner SA
    J Mol Biol; 2004 Aug; 341(2):617-31. PubMed ID: 15276848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of structural MNA descriptors for designing profiles of protein families].
    Fomenko AE; Sobolev BN; Filimonov DA; Poroĭkov VV
    Biofizika; 2003; 48(4):595-605. PubMed ID: 14515477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of conserved key amino acid positions to morph protein folds.
    Reddy BV; Li WW; Bourne PE
    Biopolymers; 2002 Jul; 64(3):139-45. PubMed ID: 12012349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A consensus prediction of the secondary structure for the 6-phospho-beta-D-galactosidase superfamily.
    Gerloff DL; Benner SA
    Proteins; 1995 Apr; 21(4):273-81. PubMed ID: 7567950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence and hydropathy profile analysis of two classes of secondary transporters.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 2005; 22(3):177-89. PubMed ID: 16096261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology modeling of an RNP domain from a human RNA-binding protein: Homology-constrained energy optimization provides a criterion for distinguishing potential sequence alignments.
    Sahasrabudhe PV; Tejero R; Kitao S; Furuichi Y; Montelione GT
    Proteins; 1998 Dec; 33(4):558-66. PubMed ID: 9849939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif.
    Magliery TJ; Regan L
    J Mol Biol; 2004 Oct; 343(3):731-45. PubMed ID: 15465058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.