These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24819340)

  • 1. Morphology effect of bioglass-reinforced hydroxyapatite (Bonelike(®) ) on osteoregeneration.
    Atayde LM; Cortez PP; Afonso A; Santos M; Maurício AC; Santos JD
    J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):292-304. PubMed ID: 24819340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques.
    Cortez PP; Atayde LM; Silva MA; Armada-da-Silva P; Fernandes MH; Afonso A; Lopes MA; Maurício AC; Santos JD
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):170-9. PubMed ID: 21714082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of a xenogeneic and an alloplastic material used in dental implants in terms of physico-chemical characteristics and in vivo inflammatory response.
    Figueiredo A; Coimbra P; Cabrita A; Guerra F; Figueiredo M
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3506-13. PubMed ID: 23706240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications.
    Santos D; Correia CO; Silva DM; Gomes PS; Fernandes MH; Santos JD; Sencadas V
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1184-1190. PubMed ID: 28415405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes.
    Dias GJ; Mahoney P; Hung NA; Sharma LA; Kalita P; Smith RA; Kelly RJ; Ali A
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2034-2044. PubMed ID: 27388333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike synthetic bone graft.
    Gutierres M; Hussain NS; Lopes MA; Afonso A; Cabral AT; Almeida L; Santos JD
    J Orthop Res; 2006 May; 24(5):953-8. PubMed ID: 16609968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of various properties of hydroxyapatite ceramics on osteoconduction and stability.
    Kurioka K; Umeda M; Teranobu O; Komori T
    Kobe J Med Sci; 1999 Aug; 45(3-4):149-63. PubMed ID: 10752309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep.
    Bodde EW; Wolke JG; Kowalski RS; Jansen JA
    J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone neo-formation and mineral degradation of 4Bone.(®) Part II: histological and histomorphometric analysis in critical size defects in rabbits.
    Calvo-Guirado JL; Maté-Sánchez JE; Delgado-Ruiz RA; Romanos GE; De Aza-Moya P; Velázquez P
    Clin Oral Implants Res; 2015 Dec; 26(12):1402-6. PubMed ID: 25163802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.
    Basu B; Sabareeswaran A; Shenoy SJ
    J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1168-79. PubMed ID: 25303146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects.
    Rh Owen G; Dard M; Larjava H
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2493-2512. PubMed ID: 29266701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation.
    Fricain JC; Aid R; Lanouar S; Maurel DB; Le Nihouannen D; Delmond S; Letourneur D; Amedee Vilamitjana J; Catros S
    Dent Mater; 2018 Jul; 34(7):1024-1035. PubMed ID: 29636238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.
    Bernhardt A; Lode A; Peters F; Gelinsky M
    Clin Oral Implants Res; 2013 Apr; 24(4):441-9. PubMed ID: 22092911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoconduction at porous hydroxyapatite with various pore configurations.
    Chang BS; Lee CK; Hong KS; Youn HJ; Ryu HS; Chung SS; Park KW
    Biomaterials; 2000 Jun; 21(12):1291-8. PubMed ID: 10811311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
    Kubasiewicz-Ross P; Hadzik J; Seeliger J; Kozak K; Jurczyszyn K; Gerber H; Dominiak M; Kunert-Keil C
    Ann Anat; 2017 Sep; 213():83-90. PubMed ID: 28655570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dental pulp stem cells and Bonelike
    Campos JM; Sousa AC; Caseiro AR; Pedrosa SS; Pinto PO; Branquinho MV; Amorim I; Santos JD; Pereira T; Mendonça CM; Afonso A; Atayde LM; Maurício AC
    Regen Biomater; 2019 Feb; 6(1):49-59. PubMed ID: 30740242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.