BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24819723)

  • 1. Fluorescence anisotropy uncovers changes in protein packing with inclusion growth in a cellular model of polyglutamine aggregation.
    Bhardwaj V; Panicker MM; Udgaonkar JB
    Biochemistry; 2014 Jun; 53(22):3621-36. PubMed ID: 24819723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic.
    Takahashi T; Kikuchi S; Katada S; Nagai Y; Nishizawa M; Onodera O
    Hum Mol Genet; 2008 Feb; 17(3):345-56. PubMed ID: 17947294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.
    Squire A; Verveer PJ; Rocks O; Bastiaens PI
    J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.
    Schipper-Krom S; Juenemann K; Jansen AH; Wiemhoefer A; van den Nieuwendijk R; Smith DL; Hink MA; Bates GP; Overkleeft H; Ovaa H; Reits E
    FEBS Lett; 2014 Jan; 588(1):151-9. PubMed ID: 24291262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine.
    Ghukasyan V; Hsu CC; Liu CR; Kao FJ; Cheng TH
    J Biomed Opt; 2010; 15(1):016008. PubMed ID: 20210454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor.
    Pollitt SK; Pallos J; Shao J; Desai UA; Ma AA; Thompson LM; Marsh JL; Diamond MI
    Neuron; 2003 Nov; 40(4):685-94. PubMed ID: 14622574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically active molecules that reduce polyglutamine aggregation and toxicity.
    Desai UA; Pallos J; Ma AA; Stockwell BR; Thompson LM; Marsh JL; Diamond MI
    Hum Mol Genet; 2006 Jul; 15(13):2114-24. PubMed ID: 16720620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live cell imaging and biophotonic methods reveal two types of mutant huntingtin inclusions.
    Caron NS; Hung CL; Atwal RS; Truant R
    Hum Mol Genet; 2014 May; 23(9):2324-38. PubMed ID: 24334607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intranuclear ataxin1 inclusions contain both fast- and slow-exchanging components.
    Stenoien DL; Mielke M; Mancini MA
    Nat Cell Biol; 2002 Oct; 4(10):806-10. PubMed ID: 12360291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of fluorescence anisotropy during photoswitching provides a simple readout for protein self-association.
    Ojha N; Rainey KH; Patterson GH
    Nat Commun; 2020 Jan; 11(1):21. PubMed ID: 31911590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-lapse FRET microscopy using fluorescence anisotropy.
    Matthews DR; Carlin LM; Ofo E; Barber PR; Vojnovic B; Irving M; Ng T; Ameer-Beg SM
    J Microsc; 2010 Jan; 237(1):51-62. PubMed ID: 20055918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of EGF receptor oligomerization by homo-FRET.
    de Heus C; Kagie N; Heukers R; van Bergen en Henegouwen PM; Gerritsen HC
    Methods Cell Biol; 2013; 117():305-21. PubMed ID: 24143984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inefficient degradation of truncated polyglutamine proteins by the proteasome.
    Holmberg CI; Staniszewski KE; Mensah KN; Matouschek A; Morimoto RI
    EMBO J; 2004 Oct; 23(21):4307-18. PubMed ID: 15470501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immiscible inclusion bodies formed by polyglutamine and poly(glycine-alanine) are enriched with distinct proteomes but converge in proteins that are risk factors for disease and involved in protein degradation.
    Radwan M; Lilley JD; Ang CS; Reid GE; Hatters DM
    PLoS One; 2020; 15(8):e0233247. PubMed ID: 32857759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis.
    Chai Y; Shao J; Miller VM; Williams A; Paulson HL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9310-5. PubMed ID: 12084819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy.
    Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S
    Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy.
    Kim SY; Arai Y; Tani T; Takatsuka H; Saito Y; Kawashima T; Kawakami S; Miyawaki A; Nagai T
    Microscopy (Oxf); 2017 Apr; 66(2):110-119. PubMed ID: 28043995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.