BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24820024)

  • 21. The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae.
    Kosourov S; Makarova V; Fedorov AS; Tsygankov A; Seibert M; Ghirardi ML
    Photosynth Res; 2005 Sep; 85(3):295-305. PubMed ID: 16170632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.
    Nagy V; Vidal-Meireles A; Tengölics R; Rákhely G; Garab G; Kovács L; Tóth SZ
    Plant Cell Environ; 2016 Jul; 39(7):1460-72. PubMed ID: 26714836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.
    Lehr F; Morweiser M; Rosello Sastre R; Kruse O; Posten C
    J Biotechnol; 2012 Nov; 162(1):89-96. PubMed ID: 22750091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the mitochondrial alternative oxidase pathway in hydrogen photoproduction in Chlorella protothecoides.
    Zhang L; He M; Liu J; Li L
    Planta; 2015 Apr; 241(4):1005-14. PubMed ID: 25544543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light.
    Tolstygina IV; Antal TK; Kosourov SN; Krendeleva TE; Rubin AB; Tsygankov AA
    Biotechnol Bioeng; 2009 Mar; 102(4):1055-61. PubMed ID: 18985615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
    Philipps G; Happe T; Hemschemeier A
    Planta; 2012 Apr; 235(4):729-45. PubMed ID: 22020754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
    Kosourov S; Tsygankov A; Seibert M; Ghirardi ML
    Biotechnol Bioeng; 2002 Jun; 78(7):731-40. PubMed ID: 12001165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.
    Ghysels B; Godaux D; Matagne RF; Cardol P; Franck F
    PLoS One; 2013; 8(5):e64161. PubMed ID: 23717558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
    Hemschemeier A; Fouchard S; Cournac L; Peltier G; Happe T
    Planta; 2008 Jan; 227(2):397-407. PubMed ID: 17885762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.
    Fouchard S; Pruvost J; Degrenne B; Titica M; Legrand J
    Biotechnol Bioeng; 2009 Jan; 102(1):232-45. PubMed ID: 18688816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay between non-photochemical plastoquinone reduction and re-oxidation in pre-illuminated Chlamydomonas reinhardtii: a chlorophyll fluorescence study.
    Houyoux PA; Ghysels B; Lecler R; Franck F
    Photosynth Res; 2011 Oct; 110(1):13-24. PubMed ID: 21948601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen fuel production by transgenic microalgae.
    Melis A; Seibert M; Ghirardi ML
    Adv Exp Med Biol; 2007; 616():110-21. PubMed ID: 18161495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Re-routing photosynthetic energy for continuous hydrogen production in vivo.
    Ben-Zvi O; Dafni E; Feldman Y; Yacoby I
    Biotechnol Biofuels; 2019; 12():266. PubMed ID: 31737095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Stepwise NaHSO
    Wei L; Li X; Fan B; Ran Z; Ma W
    Front Plant Sci; 2018; 9():1532. PubMed ID: 30429859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of algal Proton Gradient Regulation 5 increases reactive oxygen species scavenging and H
    Chen M; Zhang J; Zhao L; Xing J; Peng L; Kuang T; Rochaix JD; Huang F
    J Integr Plant Biol; 2016 Dec; 58(12):943-946. PubMed ID: 27762070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relevance of nutrient media composition for hydrogen production in Chlamydomonas.
    Gonzalez-Ballester D; Jurado-Oller JL; Fernandez E
    Photosynth Res; 2015 Sep; 125(3):395-406. PubMed ID: 25952745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H
    Nagy V; Vidal-Meireles A; Podmaniczki A; Szentmihályi K; Rákhely G; Zsigmond L; Kovács L; Tóth SZ
    Plant J; 2018 May; 94(3):548-561. PubMed ID: 29474754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.