BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 24820099)

  • 1. Beyond Warburg effect--dual metabolic nature of cancer cells.
    Xie J; Wu H; Dai C; Pan Q; Ding Z; Hu D; Ji B; Luo Y; Hu X
    Sci Rep; 2014 May; 4():4927. PubMed ID: 24820099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems.
    Daverio Z; Kolkman M; Perrier J; Brunet L; Bendridi N; Sanglar C; Berger MA; Panthu B; Rautureau GJP
    Sci Rep; 2023 Oct; 13(1):17733. PubMed ID: 37853114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect.
    Pereira-Nunes A; Afonso J; Granja S; Baltazar F
    Adv Exp Med Biol; 2020; 1219():51-74. PubMed ID: 32130693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype.
    de Groof AJ; te Lindert MM; van Dommelen MM; Wu M; Willemse M; Smift AL; Winer M; Oerlemans F; Pluk H; Fransen JA; Wieringa B
    Mol Cancer; 2009 Jul; 8():54. PubMed ID: 19646236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death.
    Wu H; Ding Z; Hu D; Sun F; Dai C; Xie J; Hu X
    J Pathol; 2012 Jun; 227(2):189-99. PubMed ID: 22190257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth.
    Christofk HR; Vander Heiden MG; Harris MH; Ramanathan A; Gerszten RE; Wei R; Fleming MD; Schreiber SL; Cantley LC
    Nature; 2008 Mar; 452(7184):230-3. PubMed ID: 18337823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.
    Shan M; Dai D; Vudem A; Varner JD; Stroock AD
    PLoS Comput Biol; 2018 Dec; 14(12):e1006584. PubMed ID: 30532226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of lactic acidosis on the survival of Lewis lung carcinoma cells.
    Kolesnik DL; Pyaskovskaya ON; Solyanik GI
    Exp Oncol; 2017 Jul; 39(2):112-116. PubMed ID: 29483490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle.
    Marcinek DJ; Kushmerick MJ; Conley KE
    J Appl Physiol (1985); 2010 Jun; 108(6):1479-86. PubMed ID: 20133437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect.
    Dai Z; Shestov AA; Lai L; Locasale JW
    Biophys J; 2016 Sep; 111(5):1088-100. PubMed ID: 27602736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes.
    Dietl K; Renner K; Dettmer K; Timischl B; Eberhart K; Dorn C; Hellerbrand C; Kastenberger M; Kunz-Schughart LA; Oefner PJ; Andreesen R; Gottfried E; Kreutz MP
    J Immunol; 2010 Feb; 184(3):1200-9. PubMed ID: 20026743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.
    Gatenby RA; Gawlinski ET
    Cancer Res; 2003 Jul; 63(14):3847-54. PubMed ID: 12873971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Hyper-warburgism," a cause of asymptomatic hypoglycemia with lactic acidosis in a patient with non-Hodgkin's lymphoma.
    Elhomsy GC; Eranki V; Albert SG; Fesler MJ; Parker SM; Michael AG; Griffing GT
    J Clin Endocrinol Metab; 2012 Dec; 97(12):4311-6. PubMed ID: 23055548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.
    Mathupala SP; Ko YH; Pedersen PL
    Biochim Biophys Acta; 2010; 1797(6-7):1225-30. PubMed ID: 20381449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acidosis induces resistance to the pan-Akt inhibitor uprosertib in colon cancer cells.
    Barnes EME; Xu Y; Benito A; Herendi L; Siskos AP; Aboagye EO; Nijhuis A; Keun HC
    Br J Cancer; 2020 Apr; 122(9):1298-1308. PubMed ID: 32152504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.
    Mack N; Mazzio EA; Bauer D; Flores-Rozas H; Soliman KF
    Anticancer Res; 2017 Mar; 37(3):1205-1212. PubMed ID: 28314283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.