These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24820154)

  • 1. Small angle X-ray study of cellulose macromolecules produced by tunicates and bacteria.
    Khandelwal M; Windle AH
    Int J Biol Macromol; 2014 Jul; 68():215-7. PubMed ID: 24820154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose in the house of the appendicularian Oikopleura rufescens.
    Kimura S; Ohshima C; Hirose E; Nishikawa J; Itoh T
    Protoplasma; 2001; 216(1-2):71-4. PubMed ID: 11732199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the contributions of hemicelluloses to assembly and mechanical properties of cellulose networks.
    Zhang W; Yang J; Lu Y; Li M; Peng F; Bian J
    Carbohydr Polym; 2023 Feb; 301(Pt A):120292. PubMed ID: 36436850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of in vitro cellulose synthesis by bacterial cellulose synthase with time-resolved small angle X-ray scattering.
    Tajima H; Penttilä PA; Imai T; Yamamoto K; Yuguchi Y
    Int J Biol Macromol; 2019 Jun; 130():765-777. PubMed ID: 30831170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution.
    Blanchet CE; Svergun DI
    Annu Rev Phys Chem; 2013; 64():37-54. PubMed ID: 23216378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.
    Martínez-Sanz M; Gidley MJ; Gilbert EP
    Carbohydr Polym; 2015 Jul; 125():120-34. PubMed ID: 25857967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment.
    Tischer PC; Sierakowski MR; Westfahl H; Tischer CA
    Biomacromolecules; 2010 May; 11(5):1217-24. PubMed ID: 20369885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure of cellulose microfibrils in spruce wood.
    Fernandes AN; Thomas LH; Altaner CM; Callow P; Forsyth VT; Apperley DC; Kennedy CJ; Jarvis MC
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):E1195-203. PubMed ID: 22065760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM observation of band-like cellulose assemblies produced by Acetobacter xylinum.
    Hirai A; Tsujii Y; Tsuji M; Horii F
    Biomacromolecules; 2004; 5(6):2079-81. PubMed ID: 15530019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure analysis of regenerated cellulose hydrogels by small-angle and ultra-small-angle x-ray scattering.
    Ando H; Konishi T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):727-33. PubMed ID: 11088527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DARA: a web server for rapid search of structural neighbours using solution small angle X-ray scattering data.
    Kikhney AG; Panjkovich A; Sokolova AV; Svergun DI
    Bioinformatics; 2016 Feb; 32(4):616-8. PubMed ID: 26504146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.
    Elazzouzi-Hafraoui S; Nishiyama Y; Putaux JL; Heux L; Dubreuil F; Rochas C
    Biomacromolecules; 2008 Jan; 9(1):57-65. PubMed ID: 18052127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements.
    Patel TR; Reuten R; Xiong S; Meier M; Winzor DJ; Koch M; Stetefeld J
    Matrix Biol; 2012 Mar; 31(2):135-40. PubMed ID: 22210009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of X-ray and neutron scattering from biomacromolecular solutions.
    Petoukhov MV; Svergun DI
    Curr Opin Struct Biol; 2007 Oct; 17(5):562-71. PubMed ID: 17714935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the nature of cellulose microfibrils.
    Su Y; Burger C; Ma H; Chu B; Hsiao BS
    Biomacromolecules; 2015 Apr; 16(4):1201-9. PubMed ID: 25794054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.