These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24820181)

  • 1. Mapping of the photoinduced electron traps in TiO₂ by picosecond X-ray absorption spectroscopy.
    Rittmann-Frank MH; Milne CJ; Rittmann J; Reinhard M; Penfold TJ; Chergui M
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5858-62. PubMed ID: 24820181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2.
    Santomauro FG; Lübcke A; Rittmann J; Baldini E; Ferrer A; Silatani M; Zimmermann P; Grübel S; Johnson JA; Mariager SO; Beaud P; Grolimund D; Borca C; Ingold G; Johnson SL; Chergui M
    Sci Rep; 2015 Oct; 5():14834. PubMed ID: 26437873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced charge separation in anatase TiO2 particles.
    Berger T; Sterrer M; Diwald O; Knözinger E; Panayotov D; Thompson TL; Yates JT
    J Phys Chem B; 2005 Apr; 109(13):6061-8. PubMed ID: 16851666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling surface defects and photophysics in TiO2 nanoparticles.
    Llansola-Portoles MJ; Bergkamp JJ; Finkelstein-Shapiro D; Sherman BD; Kodis G; Dimitrijevic NM; Gust D; Moore TA; Moore AL
    J Phys Chem A; 2014 Nov; 118(45):10631-8. PubMed ID: 25109403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition.
    Tamaki Y; Furube A; Murai M; Hara K; Katoh R; Tachiya M
    Phys Chem Chem Phys; 2007 Mar; 9(12):1453-60. PubMed ID: 17356752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR investigation of TiO2 nanoparticles with temperature-dependent properties.
    Kumar CP; Gopal NO; Wang TC; Wong MS; Ke SC
    J Phys Chem B; 2006 Mar; 110(11):5223-9. PubMed ID: 16539451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.
    Yu J; Fan J; Lv K
    Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy.
    Ke SC; Wang TC; Wong MS; Gopal NO
    J Phys Chem B; 2006 Jun; 110(24):11628-34. PubMed ID: 16800456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.
    Rui Y; Li Y; Wang H; Zhang Q
    Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior.
    Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P
    J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy.
    Penfold TJ; Szlachetko J; Santomauro FG; Britz A; Gawelda W; Doumy G; March AM; Southworth SH; Rittmann J; Abela R; Chergui M; Milne CJ
    Nat Commun; 2018 Feb; 9(1):478. PubMed ID: 29396396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.
    Long R; Prezhdo OV
    J Am Chem Soc; 2014 Mar; 136(11):4343-54. PubMed ID: 24568726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO
    Fan YH; Ho CY; Chang YJ
    Scanning; 2017; 2017():9152973. PubMed ID: 29109828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces.
    Selcuk S; Selloni A
    Nat Mater; 2016 Oct; 15(10):1107-12. PubMed ID: 27322821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface modification on back electron transfer dynamics of dibromo fluorescein sensitized TiO2 nanoparticles.
    Ramakrishna G; Das A; Ghosh HN
    Langmuir; 2004 Feb; 20(4):1430-5. PubMed ID: 15803730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N3-dye-induced visible laser anatase-to-rutile phase transition on mesoporous TiO2 films.
    Parussulo AL; Huila MF; Araki K; Toma HE
    Langmuir; 2011 Aug; 27(15):9094-9. PubMed ID: 21707061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.