These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 24820263)
1. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. van den Berg B; Krebs RM; Lorist MM; Woldorff MG Cogn Affect Behav Neurosci; 2014 Jun; 14(2):561-77. PubMed ID: 24820263 [TBL] [Abstract][Full Text] [Related]
2. Task preparation processes related to reward prediction precede those related to task-difficulty expectation. Schevernels H; Krebs RM; Santens P; Woldorff MG; Boehler CN Neuroimage; 2014 Jan; 84():639-47. PubMed ID: 24064071 [TBL] [Abstract][Full Text] [Related]
3. Caffeine Boosts Preparatory Attention for Reward-related Stimulus Information. van den Berg B; de Jong M; Woldorff MG; Lorist MM J Cogn Neurosci; 2021 Jan; 33(1):104-118. PubMed ID: 32985946 [TBL] [Abstract][Full Text] [Related]
4. Electrophysiological correlates of preparation and implementation for different types of task shifts. Hsieh S; Wu M Brain Res; 2011 Nov; 1423():41-52. PubMed ID: 22000079 [TBL] [Abstract][Full Text] [Related]
6. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching. Capa RL; Bouquet CA; Dreher JC; Dufour A Cortex; 2013; 49(7):1943-54. PubMed ID: 22770561 [TBL] [Abstract][Full Text] [Related]
7. Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Padmala S; Pessoa L J Cogn Neurosci; 2011 Nov; 23(11):3419-32. PubMed ID: 21452938 [TBL] [Abstract][Full Text] [Related]
8. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. Sylvester CM; Shulman GL; Jack AI; Corbetta M J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319 [TBL] [Abstract][Full Text] [Related]
9. Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Appelbaum LG; Meyerhoff KL; Woldorff MG Cereb Cortex; 2009 Nov; 19(11):2508-21. PubMed ID: 19321654 [TBL] [Abstract][Full Text] [Related]
10. Neural correlates of stimulus and response interference in a 2-1 mapping stroop task. Chen A; Bailey K; Tiernan BN; West R Int J Psychophysiol; 2011 May; 80(2):129-38. PubMed ID: 21356252 [TBL] [Abstract][Full Text] [Related]
11. Reward expectation modulates multiple stages of auditory conflict control. Kang G; Chang W; Wang L; Zhou X Int J Psychophysiol; 2019 Dec; 146():148-156. PubMed ID: 31648025 [TBL] [Abstract][Full Text] [Related]
12. Are all behavioral reward benefits created equally? An EEG-fMRI study. Kostandyan M; Park HRP; Bundt C; González-García C; Wisniewski D; Krebs RM; Boehler CN Neuroimage; 2020 Jul; 215():116829. PubMed ID: 32283272 [TBL] [Abstract][Full Text] [Related]
14. Teasing apart the anticipatory and consummatory processing of monetary incentives: An event-related potential study of reward dynamics. Novak KD; Foti D Psychophysiology; 2015 Nov; 52(11):1470-82. PubMed ID: 26223291 [TBL] [Abstract][Full Text] [Related]
15. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task. Stern ER; Mangels JA J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306 [TBL] [Abstract][Full Text] [Related]
16. Response inhibition and attention processing in 5- to 7-year-old children with and without symptoms of ADHD: An ERP study. Spronk M; Jonkman LM; Kemner C Clin Neurophysiol; 2008 Dec; 119(12):2738-52. PubMed ID: 18951061 [TBL] [Abstract][Full Text] [Related]
17. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict. Donohue SE; Todisco AE; Woldorff MG J Cogn Neurosci; 2013 Apr; 25(4):623-35. PubMed ID: 23249355 [TBL] [Abstract][Full Text] [Related]