These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24820263)

  • 21. When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm.
    Breska A; Deouell LY
    J Neurosci; 2016 Jul; 36(27):7154-66. PubMed ID: 27383591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.
    Bachman MD; Wang L; Gamble ML; Woldorff MG
    J Neurosci; 2020 Jul; 40(28):5455-5464. PubMed ID: 32471878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task.
    Schevernels H; Bombeke K; Krebs RM; Boehler CN
    Psychophysiology; 2016 Feb; 53(2):186-97. PubMed ID: 26481327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous Attention Affects Decision-related Neural Activity but Not Afferent Visual Responses.
    Morrow A; Pilipenko A; Turkovich E; Sankaran S; Samaha J
    J Cogn Neurosci; 2024 Nov; 36(11):2481-2494. PubMed ID: 39145755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention-related EEG markers in adult ADHD.
    Hasler R; Perroud N; Meziane HB; Herrmann F; Prada P; Giannakopoulos P; Deiber MP
    Neuropsychologia; 2016 Jul; 87():120-133. PubMed ID: 27178310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of preparatory activity indexed by the contingent negative variation in children.
    Flores AB; Digiacomo MR; Meneres S; Trigo E; Gómez CM
    Brain Cogn; 2009 Nov; 71(2):129-40. PubMed ID: 19500893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of reward associations on conflict processing in the Stroop task.
    Krebs RM; Boehler CN; Woldorff MG
    Cognition; 2010 Dec; 117(3):341-7. PubMed ID: 20864094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention.
    Eimer M; Van Velzen J; Gherri E; Press C
    Brain Res; 2007 Mar; 1135(1):154-66. PubMed ID: 17198687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood.
    Aarts E; Roelofs A; van Turennout M
    J Neurosci; 2008 Apr; 28(18):4671-8. PubMed ID: 18448644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral and electrophysiological investigation of semantic and response conflict in the Stroop task.
    Augustinova M; Silvert L; Ferrand L; Llorca PM; Flaudias V
    Psychon Bull Rev; 2015 Apr; 22(2):543-9. PubMed ID: 25092389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reward valence modulates conflict-driven attentional adaptation: electrophysiological evidence.
    van Steenbergen H; Band GP; Hommel B
    Biol Psychol; 2012 Jul; 90(3):234-41. PubMed ID: 22504294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Rapid Capture of Attention by Rewarded Objects.
    Donohue SE; Hopf JM; Bartsch MV; Schoenfeld MA; Heinze HJ; Woldorff MG
    J Cogn Neurosci; 2016 Apr; 28(4):529-41. PubMed ID: 26741800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm.
    Tsai CL; Pan CY; Cherng RJ; Hsu YW; Chiu HH
    Brain Cogn; 2009 Dec; 71(3):246-58. PubMed ID: 19751962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trait anxiety and the dynamics of attentional control.
    Osinsky R; Gebhardt H; Alexander N; Hennig J
    Biol Psychol; 2012 Jan; 89(1):252-9. PubMed ID: 22044800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.
    Mento G
    Neuropsychologia; 2017 Dec; 107():31-40. PubMed ID: 29109036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age differences in attentional control: an event-related potential approach.
    Kray J; Eppinger B; Mecklinger A
    Psychophysiology; 2005 Jul; 42(4):407-16. PubMed ID: 16008769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.