BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24820401)

  • 1. Seed-mediated synthesis of bimetallic ruthenium-platinum nanoparticles efficient in cinnamaldehyde selective hydrogenation.
    Qi X; Axet MR; Philippot K; Lecante P; Serp P
    Dalton Trans; 2014 Jun; 43(24):9283-95. PubMed ID: 24820401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the influence of diphosphine ligands on the chemical order in small RuPt nanoparticles: combined structural and surface reactivity studies.
    Lara P; Ayvalı T; Casanove MJ; Lecante P; Mayoral A; Fazzini PF; Philippot K; Chaudret B
    Dalton Trans; 2013 Jan; 42(2):372-82. PubMed ID: 23070398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution.
    Bouzouita D; Lippens G; Baquero EA; Fazzini PF; Pieters G; Coppel Y; Lecante P; Tricard S; Martínez-Prieto LM; Chaudret B
    Nanoscale; 2019 Sep; 11(35):16544-16552. PubMed ID: 31455954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids.
    Ueji M; Harada M; Kimura Y
    J Colloid Interface Sci; 2008 Jun; 322(1):358-63. PubMed ID: 18377917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonochemically prepared platinum-ruthenium bimetallic nanoparticles.
    Vinodgopal K; He Y; Ashokkumar M; Grieser F
    J Phys Chem B; 2006 Mar; 110(9):3849-52. PubMed ID: 16509663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction.
    AlYami NM; LaGrow AP; Joya KS; Hwang J; Katsiev K; Anjum DH; Losovyj Y; Sinatra L; Kim JY; Bakr OM
    Phys Chem Chem Phys; 2016 Jun; 18(24):16169-78. PubMed ID: 27242173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation.
    Gual A; Axet MR; Philippot K; Chaudret B; Denicourt-Nowicki A; Roucoux A; Castillon S; Claver C
    Chem Commun (Camb); 2008 Jun; (24):2759-61. PubMed ID: 18688301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene.
    Liu M; Yu W; Liu H; Zheng J
    J Colloid Interface Sci; 1999 Jun; 214(2):231-237. PubMed ID: 10339363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relating the composition of Pt(x)Ru(100-x)/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction.
    Taufany F; Pan CJ; Lai FJ; Chou HL; Sarma LS; Rick J; Lin JM; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2013 Jan; 19(3):905-15. PubMed ID: 23197430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.
    Zahmakiran M; Ayvalı T; Philippot K
    Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids.
    Schröder F; Esken D; Cokoja M; van den Berg MW; Lebedev OI; Van Tendeloo G; Walaszek B; Buntkowsky G; Limbach HH; Chaudret B; Fischer RA
    J Am Chem Soc; 2008 May; 130(19):6119-30. PubMed ID: 18402452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.
    Huang J; Liu Z; He C; Gan LM
    J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction.
    Bonnefille E; Novio F; Gutmann T; Poteau R; Lecante P; Jumas JC; Philippot K; Chaudret B
    Nanoscale; 2014 Aug; 6(16):9806-16. PubMed ID: 25027477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids.
    Salas G; Campbell PS; Santini CC; Philippot K; Costa Gomes MF; Pádua AA
    Dalton Trans; 2012 Dec; 41(45):13919-26. PubMed ID: 23023650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size and composition control of Pt-In nanoparticles prepared by seed-mediated growth using bimetallic seeds.
    Somodi F; Werner S; Peng Z; Getsoian AB; Mlinar AN; Yeo BS; Bell AT
    Langmuir; 2012 Feb; 28(7):3345-9. PubMed ID: 22300428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic distribution and structural evolution of mesostructured PtRu nanoparticles electrodeposited on a microemulsion lyotropic liquid-crystalline template probed using EXAFS and XANES.
    Chen SA; Liang YC; Lu KT; Pao CW; Lee JF; Lin TL; Chen JM
    Phys Chem Chem Phys; 2014 Mar; 16(9):3939-45. PubMed ID: 24346132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-soluble metal nanoparticles with PEG-tagged 15-membered azamacrocycles as stabilizers.
    Mejías N; Serra-Muns A; Pleixats R; Shafir A; Tristany M
    Dalton Trans; 2009 Oct; (37):7748-55. PubMed ID: 19759949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substituent-free gallium by hydrogenolysis of coordinated GaCp*: synthesis and structure of highly fluxional [Ru2(Ga)(GaCp*)7(H)3].
    Cadenbach T; Gemel C; Schmid R; Halbherr M; Yusenko K; Cokoja M; Fischer RA
    Angew Chem Int Ed Engl; 2009; 48(21):3872-6. PubMed ID: 19219882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.