These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24820508)

  • 1. Oxidation-induced self-assembly of Ag nanoshells into transparent and opaque Ag hydrogels and aerogels.
    Gao X; Esteves RJ; Luong TT; Jaini R; Arachchige IU
    J Am Chem Soc; 2014 Jun; 136(22):7993-8002. PubMed ID: 24820508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering.
    Gao X; Esteves RJ; Nahar L; Nowaczyk J; Arachchige IU
    ACS Appl Mater Interfaces; 2016 May; 8(20):13076-85. PubMed ID: 27142886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks.
    Arachchige IU; Brock SL
    J Am Chem Soc; 2006 Jun; 128(24):7964-71. PubMed ID: 16771511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels.
    Yao Q; Brock SL
    Inorg Chem; 2011 Oct; 50(20):9985-92. PubMed ID: 21954845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
    Yu H; Brock SL
    ACS Nano; 2008 Aug; 2(8):1563-70. PubMed ID: 19206358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly.
    Nahar L; Esteves RJ; Hafiz S; Özgür Ü; Arachchige IU
    ACS Nano; 2015 Oct; 9(10):9810-21. PubMed ID: 26389642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent, Aldehyde-Free Chitosan Aerogel.
    Takeshita S; Zhao S; Malfait WJ
    Carbohydr Polym; 2021 Jan; 251():117089. PubMed ID: 33142630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithic aerogels of silver modified cadmium sulfide colloids.
    Gill SK; Hope-Weeks LJ
    Chem Commun (Camb); 2009 Aug; (29):4384-6. PubMed ID: 19597600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous semiconductor chalcogenide aerogels.
    Mohanan JL; Arachchige IU; Brock SL
    Science; 2005 Jan; 307(5708):397-400. PubMed ID: 15662006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides.
    Yang JK; Kang H; Lee H; Jo A; Jeong S; Jeon SJ; Kim HI; Lee HY; Jeong DH; Kim JH; Lee YS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12541-9. PubMed ID: 24988366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.
    Hitihami-Mudiyanselage A; Senevirathne K; Brock SL
    ACS Nano; 2013 Feb; 7(2):1163-70. PubMed ID: 23346878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance.
    Choi Y; Hong S; Liu L; Kim SK; Park S
    Langmuir; 2012 Apr; 28(16):6670-6. PubMed ID: 22462572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.
    Yun J; Hwang SH; Jang J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2055-63. PubMed ID: 25562329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration.
    Zhai C; Jana SC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30074-30082. PubMed ID: 28806054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile tuning of plasmon bands in hollow silver nanoshells using mild reductant and mild stabilizer.
    Pattanayak S; Priyam A; Paik P
    Dalton Trans; 2013 Aug; 42(29):10597-607. PubMed ID: 23759896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example.
    Tan H; Li S; Fan WY
    J Phys Chem B; 2006 Aug; 110(32):15812-6. PubMed ID: 16898730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.