These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24820550)

  • 1. Effects of nutrients on mosquitoes and an emergent macrophyte, Schoenoplectus maritimus, for use in treatment wetlands.
    Duguma D; Walton WE
    J Vector Ecol; 2014 Jun; 39(1):1-13. PubMed ID: 24820550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-stature emergent macrophytes and crepuscular sprinkler disturbance reduce mosquito abundance in wetland mesocosms.
    Popko DA; Walton WE
    J Vector Ecol; 2013 Dec; 38(2):379-89. PubMed ID: 24581369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inorganic nitrogen enrichment on mosquitoes (Diptera: Culicidae) and the associated aquatic community in constructed treatment wetlands.
    Sanford MR; Chan K; Walton WE
    J Med Entomol; 2005 Sep; 42(5):766-76. PubMed ID: 16363159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of Culex species in vegetation bands of a constructed wetland undergoing integrated mosquito management.
    Walton WE; Popko DA; Van Dam AR; Merrill A
    J Am Mosq Control Assoc; 2013 Mar; 29(1):69-73. PubMed ID: 23687860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of vegetation management strategies for controlling mosquitoes in a southern California constructed wetland.
    Jiannino JA; Walton WE
    J Am Mosq Control Assoc; 2004 Mar; 20(1):18-26. PubMed ID: 15088701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonium tolerance and toxicity of Actinoscirpus grossus--a candidate species for use in tropical constructed wetland systems.
    Piwpuan N; Jampeetong A; Brix H
    Ecotoxicol Environ Saf; 2014 Sep; 107():319-28. PubMed ID: 25038560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denitrification in constructed wetlands used for treatment of swine wastewater.
    Hunt PG; Matheny TA; Szögi AA
    J Environ Qual; 2003; 32(2):727-35. PubMed ID: 12708698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Two Management Strategies for Harvested Emergent Vegetation on Immature Mosquito Abundance and Water Quality.
    Walton WE; Mai K; Nguyen A; Tse R
    J Am Mosq Control Assoc; 2020 Sep; 36(3):139-151. PubMed ID: 33600584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alum application to improve water quality in a municipal wastewater treatment wetland: effects on macrophyte growth and nutrient uptake.
    Malecki-Brown LM; White JR; Brix H
    Chemosphere; 2010 Mar; 79(2):186-92. PubMed ID: 20185158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient enrichment affects immature mosquito abundance and species composition in field-based mesocosms in the coastal plain of Georgia.
    Young GB; Golladay S; Covich A; Blackmore M
    Environ Entomol; 2014 Feb; 43(1):1-8. PubMed ID: 24341987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial performance assessment of reed bed filtration in a constructed wetland.
    Wilkins NR; Fallowfield H; Baring R
    Sci Total Environ; 2022 May; 820():153060. PubMed ID: 35038508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of 15N by macrophytes in subsurface-flow wetlands treating domestic wastewater.
    Weaver RW; Lane JJ; Johns MJ; Lesikar BJ
    Environ Technol; 2001 Jul; 22(7):837-43. PubMed ID: 11506208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.
    Duguma D; Rugman-Jones P; Kaufman MG; Hall MW; Neufeld JD; Stouthamer R; Walton WE
    PLoS One; 2013; 8(8):e72522. PubMed ID: 23967314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.
    Erickson JE; Peresta G; Montovan KJ; Drake BG
    Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vegetation management to stimulate denitrification increases mosquito abundance in multipurpose constructed treatment wetlands.
    Walton WE; Jiannino JA
    J Am Mosq Control Assoc; 2005 Mar; 21(1):22-7. PubMed ID: 15825757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California.
    Walton WE; Workman PD
    J Am Mosq Control Assoc; 1998 Mar; 14(1):95-107. PubMed ID: 9599330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.