These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24820662)

  • 41. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.
    Schiavon M; Martini LM; Corrà C; Scapinello M; Coller G; Tosi P; Ragazzi M
    Environ Pollut; 2017 Dec; 231(Pt 1):845-853. PubMed ID: 28869831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Release of volatile organic compounds during bio-drying of municipal solid waste.
    He P; Tang J; Zhang D; Zeng Y; Shao L
    J Environ Sci (China); 2010; 22(5):752-9. PubMed ID: 20608513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.
    Qian X; Shen G; Wang Z; Guo C; Liu Y; Lei Z; Zhang Z
    Waste Manag; 2014 Feb; 34(2):530-5. PubMed ID: 24188923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes.
    Forster-Carneiro T; Pérez M; Romero LI
    Bioresour Technol; 2007 Dec; 98(17):3354-66. PubMed ID: 17451946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving composting as a post-treatment of anaerobic digestate.
    Zeng Y; De Guardia A; Dabert P
    Bioresour Technol; 2016 Feb; 201():293-303. PubMed ID: 26684176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar.
    Qin Y; Wang H; Li X; Cheng JJ; Wu W
    Bioresour Technol; 2017 Dec; 245(Pt A):1058-1066. PubMed ID: 28946388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of control parameters in VOCs evolution during MSW trimming residues composting.
    Delgado-Rodríguez M; Ruiz-Montoya M; Giraldez I; López R; Madejón E; Díaz MJ
    J Agric Food Chem; 2011 Dec; 59(24):13035-42. PubMed ID: 22060272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nutrient dynamics and decomposition rates during composting of sulphitation pressmud by different methods.
    Chandra R; Kumar N; Tyagi AK
    J Environ Sci Eng; 2007 Jul; 49(3):183-8. PubMed ID: 18476441
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ash in composting of source-separated catering waste.
    Koivula N; Räikkönen T; Urpilainen S; Ranta J; Hänninen K
    Bioresour Technol; 2004 Jul; 93(3):291-9. PubMed ID: 15062825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feasibility of some treatments for improving the composting of municipal solid waste.
    Babyranidevi S; Bhoyar RV
    Indian J Environ Health; 2003 Jul; 45(3):231-4. PubMed ID: 15315147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of in situ composting on reducing offensive odors and volatile organic compounds in swineries.
    Louhelainen K; Kangas J; Veijanen A; Viilos P
    AIHAJ; 2001; 62(2):159-67. PubMed ID: 11331987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.
    Milczarek M; Neczaj E; Parkitna K
    Water Sci Technol; 2013; 68(8):1697-706. PubMed ID: 24185049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process.
    Tran HT; Binh QA; Van Tung T; Pham DT; Hoang HG; Hai Nguyen NS; Xie S; Zhang T; Mukherjee S; Bolan NS
    Environ Pollut; 2024 Jun; 351():124115. PubMed ID: 38718963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The identification and health risk assessment of odor emissions from waste landfilling and composting.
    Cheng Z; Sun Z; Zhu S; Lou Z; Zhu N; Feng L
    Sci Total Environ; 2019 Feb; 649():1038-1044. PubMed ID: 30184519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of biochar addition on the OFMSW composting process under real conditions.
    Malinowski M; Wolny-Koładka K; Vaverková MD
    Waste Manag; 2019 Feb; 84():364-372. PubMed ID: 30691911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effectiveness of three bulking agents for food waste composting.
    Adhikari BK; Barrington S; Martinez J; King S
    Waste Manag; 2009 Jan; 29(1):197-203. PubMed ID: 18558482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting.
    Yang F; Li GX; Yang QY; Luo WH
    Chemosphere; 2013 Oct; 93(7):1393-9. PubMed ID: 24001663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-treatment options for components of organic fraction of MSW in residential areas.
    Chanakya HN; Ramachandra TV; Guruprasad M; Devi V
    Environ Monit Assess; 2007 Dec; 135(1-3):129-39. PubMed ID: 17503210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste.
    Xiao Y; Zeng GM; Yang ZH; Shi WJ; Huang C; Fan CZ; Xu ZY
    Bioresour Technol; 2009 Oct; 100(20):4807-13. PubMed ID: 19487122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Co-biodrying of sewage sludge and organic fraction of municipal solid waste: Role of mixing proportions.
    Zhang D; Luo W; Yuan J; Li G
    Waste Manag; 2018 Jul; 77():333-340. PubMed ID: 29705044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.