These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24820824)
1. Arginine-containing ligands enhance H₂ oxidation catalyst performance. Dutta A; Roberts JA; Shaw WJ Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824 [TBL] [Abstract][Full Text] [Related]
2. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Dutta A; DuBois DL; Roberts JA; Shaw WJ Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16286-91. PubMed ID: 25368196 [TBL] [Abstract][Full Text] [Related]
3. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095 [TBL] [Abstract][Full Text] [Related]
4. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187 [TBL] [Abstract][Full Text] [Related]
5. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473 [TBL] [Abstract][Full Text] [Related]
6. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
7. Optimizing conditions for utilization of an H2 oxidation catalyst with outer coordination sphere functionalities. Dutta A; Ginovska B; Raugei S; Roberts JA; Shaw WJ Dalton Trans; 2016 Jun; 45(24):9786-93. PubMed ID: 26905754 [TBL] [Abstract][Full Text] [Related]
8. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(II) complex containing proton relays in the second and outer coordination spheres. Das P; Ho MH; O'Hagan M; Shaw WJ; Bullock RM; Raugei S; Helm ML Dalton Trans; 2014 Feb; 43(7):2744-54. PubMed ID: 24306451 [TBL] [Abstract][Full Text] [Related]
9. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere. Reback ML; Buchko GW; Kier BL; Ginovska-Pangovska B; Xiong Y; Lense S; Hou J; Roberts JA; Sorensen CM; Raugei S; Squier TC; Shaw WJ Chemistry; 2014 Feb; 20(6):1510-4. PubMed ID: 24443316 [TBL] [Abstract][Full Text] [Related]
10. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141 [TBL] [Abstract][Full Text] [Related]
11. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478 [TBL] [Abstract][Full Text] [Related]
13. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385 [TBL] [Abstract][Full Text] [Related]
14. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation. Shaw WJ; Helm ML; DuBois DL Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415 [TBL] [Abstract][Full Text] [Related]
16. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer. Reback ML; Ginovska-Pangovska B; Ho MH; Jain A; Squier TC; Raugei S; Roberts JA; Shaw WJ Chemistry; 2013 Feb; 19(6):1928-41. PubMed ID: 23233438 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy. Haumann M; Porthun A; Buhrke T; Liebisch P; Meyer-Klaucke W; Friedrich B; Dau H Biochemistry; 2003 Sep; 42(37):11004-15. PubMed ID: 12974636 [TBL] [Abstract][Full Text] [Related]
18. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis. Gerlach DL; Bhagan S; Cruce AA; Burks DB; Nieto I; Truong HT; Kelley SP; Herbst-Gervasoni CJ; Jernigan KL; Bowman MK; Pan S; Zeller M; Papish ET Inorg Chem; 2014 Dec; 53(24):12689-98. PubMed ID: 25427106 [TBL] [Abstract][Full Text] [Related]
19. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation. Masud J; Ioannou PC; Levesanos N; Kyritsis P; Nath M ChemSusChem; 2016 Nov; 9(22):3128-3132. PubMed ID: 27619260 [TBL] [Abstract][Full Text] [Related]
20. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]