BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24821014)

  • 1. Purification and characterization of the Staphylococcus aureus bacillithiol transferase BstA.
    Perera VR; Newton GL; Parnell JM; Komives EA; Pogliano K
    Biochim Biophys Acta; 2014 Sep; 1840(9):2851-61. PubMed ID: 24821014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of the bacillithiol-S-transferase BstA from Staphylococcus aureus.
    Francis JW; Royer CJ; Cook PD
    Protein Sci; 2018 Apr; 27(4):898-902. PubMed ID: 29417696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases.
    Newton GL; Leung SS; Wakabayashi JI; Rawat M; Fahey RC
    Biochemistry; 2011 Dec; 50(49):10751-60. PubMed ID: 22059487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis.
    Perera VR; Lapek JD; Newton GL; Gonzalez DJ; Pogliano K
    PLoS One; 2018; 13(2):e0192977. PubMed ID: 29451913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus.
    Roberts AA; Sharma SV; Strankman AW; Duran SR; Rawat M; Hamilton CJ
    Biochem J; 2013 Apr; 451(1):69-79. PubMed ID: 23256780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detoxification of toxins by bacillithiol in Staphylococcus aureus.
    Newton GL; Fahey RC; Rawat M
    Microbiology (Reading); 2012 Apr; 158(Pt 4):1117-1126. PubMed ID: 22262099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus.
    Thompson MK; Keithly ME; Goodman MC; Hammer ND; Cook PD; Jagessar KL; Harp J; Skaar EP; Armstrong RN
    Biochemistry; 2014 Feb; 53(4):755-65. PubMed ID: 24447055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis.
    Upton H; Newton GL; Gushiken M; Lo K; Holden D; Fahey RC; Rawat M
    FEBS Lett; 2012 Apr; 586(7):1004-8. PubMed ID: 22569254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Bacillithiol in Gram-Positive Firmicutes.
    Chandrangsu P; Loi VV; Antelmann H; Helmann JD
    Antioxid Redox Signal; 2018 Feb; 28(6):445-462. PubMed ID: 28301954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillithiol: a key protective thiol in Staphylococcus aureus.
    Perera VR; Newton GL; Pogliano K
    Expert Rev Anti Infect Ther; 2015; 13(9):1089-107. PubMed ID: 26184907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus.
    Rajkarnikar A; Strankman A; Duran S; Vargas D; Roberts AA; Barretto K; Upton H; Hamilton CJ; Rawat M
    Biochem Biophys Res Commun; 2013 Jun; 436(2):128-33. PubMed ID: 23618856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural and functional analysis of the glycosyltransferase BshA from Staphylococcus aureus: Insights into the reaction mechanism and regulation of bacillithiol production.
    Royer CJ; Cook PD
    Protein Sci; 2019 Jun; 28(6):1083-1094. PubMed ID: 30968475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.
    Tung QN; Linzner N; Loi VV; Antelmann H
    Free Radic Biol Med; 2018 Nov; 128():84-96. PubMed ID: 29454879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus.
    D'Elia MA; Henderson JA; Beveridge TJ; Heinrichs DE; Brown ED
    J Bacteriol; 2009 Jun; 191(12):4030-4. PubMed ID: 19376878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. YpdA, a putative bacillithiol disulfide reductase, contributes to cellular redox homeostasis and virulence in Staphylococcus aureus.
    Mikheyeva IV; Thomas JM; Kolar SL; Corvaglia AR; Gaϊa N; Leo S; Francois P; Liu GY; Rawat M; Cheung AL
    Mol Microbiol; 2019 Apr; 111(4):1039-1056. PubMed ID: 30636083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus.
    Posada AC; Kolar SL; Dusi RG; Francois P; Roberts AA; Hamilton CJ; Liu GY; Cheung A
    Infect Immun; 2014 Jan; 82(1):316-32. PubMed ID: 24166956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.
    Loi VV; Harms M; Müller M; Huyen NTT; Hamilton CJ; Hochgräfe F; Pané-Farré J; Antelmann H
    Antioxid Redox Signal; 2017 May; 26(15):835-848. PubMed ID: 27462976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus.
    Pöther DC; Gierok P; Harms M; Mostertz J; Hochgräfe F; Antelmann H; Hamilton CJ; Borovok I; Lalk M; Aharonowitz Y; Hecker M
    Int J Med Microbiol; 2013 Apr; 303(3):114-23. PubMed ID: 23517692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways.
    Fang Z; Roberts AA; Weidman K; Sharma SV; Claiborne A; Hamilton CJ; Dos Santos PC
    Biochem J; 2013 Sep; 454(2):239-47. PubMed ID: 23758290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx.
    Gaballa A; Antelmann H; Hamilton CJ; Helmann JD
    Microbiology (Reading); 2013 Oct; 159(Pt 10):2025-2035. PubMed ID: 23894131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.