BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24821205)

  • 1. Catalytic upgrading of pyrolysis vapors from Jatropha wastes using alumina, zirconia and titania based catalysts.
    Kaewpengkrow P; Atong D; Sricharoenchaikul V
    Bioresour Technol; 2014 Jul; 163():262-9. PubMed ID: 24821205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.
    Stefanidis SD; Kalogiannis KG; Iliopoulou EF; Lappas AA; Pilavachi PA
    Bioresour Technol; 2011 Sep; 102(17):8261-7. PubMed ID: 21723115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste.
    Vichaphund S; Aht-Ong D; Sricharoenchaikul V; Atong D
    Environ Technol; 2014; 35(17-20):2254-61. PubMed ID: 25145178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).
    Wang P; Zhan S; Yu H; Xue X; Hong N
    Bioresour Technol; 2010 May; 101(9):3236-41. PubMed ID: 20071166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared study of CO adsorbed on Pd/Al2O3-ZrO2. Effect of zirconia added by impregnation.
    Tiznado H; Fuentes S; Zaera F
    Langmuir; 2004 Nov; 20(24):10490-7. PubMed ID: 15544377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of fly ash-derived HZSM-5: catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor.
    Vichaphund S; Sricharoenchaikul V; Atong D
    Environ Technol; 2017 Jul; 38(13-14):1660-1672. PubMed ID: 27748642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts.
    Kumar R; Strezov V; Lovell E; Kan T; Weldekidan H; He J; Dastjerdi B; Scott J
    Bioresour Technol; 2019 May; 279():404-409. PubMed ID: 30712994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni-Mo/TiO
    Terry LM; Wee MXJ; Chew JJ; Khaerudini DS; Darsono N; Aqsha A; Saptoro A; Sunarso J
    Environ Res; 2023 May; 224():115550. PubMed ID: 36841526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry.
    Kim JW; Park SH; Jung J; Jeon JK; Ko CH; Jeong KE; Park YK
    Bioresour Technol; 2013 May; 136():431-6. PubMed ID: 23567713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renewable Hydrocarbon Production from Waste Cottonseed Oil Pyrolysis and Catalytic Upgrading of Vapors with Mo-Co and Mo-Ni Catalysts Supported on γ-Al
    Melo JA; de Sá MS; Moral A; Bimbela F; Gandía LM; Wisniewski A
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.
    Pan H; Xu M; Li Z; Huang S; He C
    Chemosphere; 2009 Jul; 76(5):721-6. PubMed ID: 19427660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts.
    Gupta S; Lanjewar R; Mondal P
    Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on Mo/ZrO2-SiO2(Al2O3) catalysts.
    Damyanova S; Centeno MA; Petrov L; Grange P
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Oct; 57(12):2495-501. PubMed ID: 11767843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature.
    Lü R; Zhou W; Shi K; Yang Y; Wang L; Pan K; Tian C; Ren Z; Fu H
    Nanoscale; 2013 Sep; 5(18):8569-76. PubMed ID: 23892951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.
    Zabeti M; Nguyen TS; Lefferts L; Heeres HJ; Seshan K
    Bioresour Technol; 2012 Aug; 118():374-81. PubMed ID: 22705959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.
    Kaewpengkrow P; Atong D; Sricharoenchaikul V
    Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of Cu/ZrO2/S2O8(2-)/gamma-Al2O3 solid acid catalyst and its catalytic activity to selective reduction of NO].
    Guo XK; Wang XM
    Huan Jing Ke Xue; 2008 Jun; 29(6):1737-42. PubMed ID: 18763532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.
    Ateş F; Miskolczi N; Borsodi N
    Bioresour Technol; 2013 Apr; 133():443-54. PubMed ID: 23455219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.