These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24821747)
1. Cheese whey as substrate of batch hydrogen production: effect of temperature and addition of buffer. Muñoz-Páez KM; Poggi-Varaldo HM; García-Mena J; Ponce-Noyola MT; Ramos-Valdivia AC; Barrera-Cortés J; Robles-González IV; Ruiz-Ordáz N; Villa-Tanaca L; Rinderknecht-Seijas N Waste Manag Res; 2014 May; 32(5):434-40. PubMed ID: 24821747 [TBL] [Abstract][Full Text] [Related]
2. Maximizing hydrogen production and substrate consumption by Escherichia coli WDHL in cheese whey fermentation. Rosales-Colunga LM; Alvarado-Cuevas ZD; Razo-Flores E; Rodríguez Ade L Appl Biochem Biotechnol; 2013 Oct; 171(3):704-15. PubMed ID: 23881784 [TBL] [Abstract][Full Text] [Related]
3. A parametric response surface study of fermentative hydrogen production from cheese whey. Akhlaghi M; Boni MR; De Gioannis G; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D Bioresour Technol; 2017 Nov; 244(Pt 1):473-483. PubMed ID: 28803097 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Romão BB; Batista FR; Ferreira JS; Costa HC; Resende MM; Cardoso VL Appl Biochem Biotechnol; 2014 Apr; 172(7):3670-85. PubMed ID: 24562979 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen and organic acid production from dark fermentation of cheese whey without buffers under mesophilic condition. Ribeiro JC; Mota VT; de Oliveira VM; Zaiat M J Environ Manage; 2022 Feb; 304():114253. PubMed ID: 35021584 [TBL] [Abstract][Full Text] [Related]
6. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H Ramos LR; Silva EL Biotechnol Lett; 2017 Jul; 39(7):983-991. PubMed ID: 28315058 [TBL] [Abstract][Full Text] [Related]
7. Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production. Lopes HJS; Ramos LR; Silva EL Appl Biochem Biotechnol; 2017 Nov; 183(3):712-728. PubMed ID: 28321784 [TBL] [Abstract][Full Text] [Related]
8. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Valdez-Vazquez I; Ríos-Leal E; Carmona-Martínez A; Muñoz-Páez KM; Poggi-Varaldo HM Environ Sci Technol; 2006 May; 40(10):3409-15. PubMed ID: 16749714 [TBL] [Abstract][Full Text] [Related]
9. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
11. Effect of inhibition treatment, type of inocula, and incubation temperature on batch H2 production from organic solid waste. Valdez-Vazquez I; Ríos-Leal E; Muñoz-Páez KM; Carmona-Martínez A; Poggi-Varaldo HM Biotechnol Bioeng; 2006 Oct; 95(3):342-9. PubMed ID: 16894637 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
14. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests. Girotto F; Lavagnolo MC; Pivato A; Cossu R Waste Manag; 2017 Dec; 70():71-80. PubMed ID: 28943079 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Rosa PR; Santos SC; Sakamoto IK; Varesche MB; Silva EL Bioresour Technol; 2014 Jun; 161():10-19. PubMed ID: 24681681 [TBL] [Abstract][Full Text] [Related]
18. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures. Ramos LR; Silva EL Appl Biochem Biotechnol; 2017 Jun; 182(2):846-869. PubMed ID: 27987191 [TBL] [Abstract][Full Text] [Related]
19. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production. Pandey A; Pandey A Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):93-99. PubMed ID: 28968216 [TBL] [Abstract][Full Text] [Related]
20. Application of a packed bed reactor for the production of hydrogen from cheese whey permeate: effect of organic loading rate. Fernández C; Carracedo B; Martínez EJ; Gómez X; Morán A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):210-7. PubMed ID: 24171421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]