These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24821783)

  • 21. Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae).
    Huysseune A; Van der heyden C; Sire JY
    Anat Embryol (Berl); 1998 Oct; 198(4):289-305. PubMed ID: 9764543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple epithelia are required to develop teeth deep inside the pharynx.
    Oralová V; Rosa JT; Larionova D; Witten PE; Huysseune A
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11503-11512. PubMed ID: 32398375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms.
    Zerina J; Smith MM
    Biol Rev Camb Philos Soc; 2005 May; 80(2):303-45. PubMed ID: 15921053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genetic basis of modularity in the development and evolution of the vertebrate dentition.
    Stock DW
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1633-53. PubMed ID: 11604128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fgf signaling is required for zebrafish tooth development.
    Jackman WR; Draper BW; Stock DW
    Dev Biol; 2004 Oct; 274(1):139-57. PubMed ID: 15355794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knockout fth1b affects early mineralization of zebrafish pharyngeal teeth.
    Zhou CY; Zheng XD; Yang DQ
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Feb; 39(1):32-37. PubMed ID: 33723934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism.
    Fraser GJ; Smith MM
    J Exp Zool B Mol Dev Evol; 2011 Mar; 316B(2):99-112. PubMed ID: 21328527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convergent Evolution of Cichlid Fish Pharyngeal Jaw Dentitions in Mollusk-Crushing Predators: Comparative X-Ray Computed Tomography of Tooth Sizes, Numbers, and Replacement.
    Hulsey CD; Meyer A; Streelman JT
    Integr Comp Biol; 2020 Sep; 60(3):656-664. PubMed ID: 32584994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae).
    Van der Heyden C; Huysseune A
    Dev Dyn; 2000 Dec; 219(4):486-96. PubMed ID: 11084648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus.
    O'Quin KE; Doshi P; Lyon A; Hoenemeyer E; Yoshizawa M; Jeffery WR
    PLoS One; 2015; 10(12):e0142208. PubMed ID: 26649887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low divergence in Dlx gene expression between dentitions of the medaka (Oryzias latipes) versus high level of expression shuffling in osteichtyans.
    Debiais-Thibaud M; Germon I; Laurenti P; Casane D; Borday-Birraux V
    Evol Dev; 2008; 10(4):464-76. PubMed ID: 18638323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis.
    Häärä O; Fujimori S; Schmidt-Ullrich R; Hartmann C; Thesleff I; Mikkola ML
    Development; 2011 Jul; 138(13):2681-91. PubMed ID: 21652647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis.
    Good-Avila SV; Yegorov S; Harron S; Bogerd J; Glen P; Ozon J; Wilson BC
    BMC Evol Biol; 2009 Dec; 9():293. PubMed ID: 20015397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of eda loss of function on upper jugal tooth morphology.
    Charles C; Pantalacci S; Peterkova R; Tafforeau P; Laudet V; Viriot L
    Anat Rec (Hoboken); 2009 Feb; 292(2):299-308. PubMed ID: 19051250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Gastric Phenotype in the Cypriniform Loaches: A Case of Reinvention?
    Gonçalves O; Castro LF; Smolka AJ; Fontainhas A; Wilson JM
    PLoS One; 2016; 11(10):e0163696. PubMed ID: 27783698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression.
    Pummila M; Fliniaux I; Jaatinen R; James MJ; Laurikkala J; Schneider P; Thesleff I; Mikkola ML
    Development; 2007 Jan; 134(1):117-25. PubMed ID: 17164417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback.
    Rennison DJ; Heilbron K; Barrett RD; Schluter D
    Am Nat; 2015 Jan; 185(1):150-6. PubMed ID: 25560560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of Foxi3 is regulated by ectodysplasin in skin appendage placodes.
    Shirokova V; Jussila M; Hytönen MK; Perälä N; Drögemüller C; Leeb T; Lohi H; Sainio K; Thesleff I; Mikkola ML
    Dev Dyn; 2013 Jun; 242(6):593-603. PubMed ID: 23441037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids.
    Tao W; Yang L; Mayden RL; He S
    Sci China Life Sci; 2019 Apr; 62(4):553-565. PubMed ID: 30929194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.