These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24821809)

  • 1. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome.
    Onozawa M; Zhang Z; Kim YJ; Goldberg L; Varga T; Bergsagel PL; Kuehl WM; Aplan PD
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7729-34. PubMed ID: 24821809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient repair of DNA double-strand breaks in malignant cells with structural instability.
    Cheng Y; Zhang Z; Keenan B; Roschke AV; Nakahara K; Aplan PD
    Mutat Res; 2010 Jan; 683(1-2):115-22. PubMed ID: 19909760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks.
    Yu Y; Pham N; Xia B; Papusha A; Wang G; Yan Z; Peng G; Chen K; Ira G
    Nature; 2018 Dec; 564(7735):287-290. PubMed ID: 30518856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtelomeric regions in mammalian cells are deficient in DNA double-strand break repair.
    Miller D; Reynolds GE; Mejia R; Stark JM; Murnane JP
    DNA Repair (Amst); 2011 May; 10(5):536-44. PubMed ID: 21466975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
    Morrish TA; Garcia-Perez JL; Stamato TD; Taccioli GE; Sekiguchi J; Moran JV
    Nature; 2007 Mar; 446(7132):208-12. PubMed ID: 17344853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks.
    Gunn A; Stark JM
    Methods Mol Biol; 2012; 920():379-91. PubMed ID: 22941618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins.
    Srikanta D; Sen SK; Conlin EM; Batzer MA
    Gene; 2009 Dec; 448(2):233-41. PubMed ID: 19501635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased sensitivity of subtelomeric regions to DNA double-strand breaks in a human cancer cell line.
    Zschenker O; Kulkarni A; Miller D; Reynolds GE; Granger-Locatelli M; Pottier G; Sabatier L; Murnane JP
    DNA Repair (Amst); 2009 Aug; 8(8):886-900. PubMed ID: 19540174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks.
    Teng SC; Kim B; Gabriel A
    Nature; 1996 Oct; 383(6601):641-4. PubMed ID: 8857543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal aberrations induced by double strand DNA breaks.
    Varga T; Aplan PD
    DNA Repair (Amst); 2005 Aug; 4(9):1038-46. PubMed ID: 15935739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the recruitment of DNA repair proteins at subtelomeric and interstitial I-SceI endonuclease-induced DNA double-strand breaks.
    Alcaraz Silva B; Jones TJ; Murnane JP
    DNA Repair (Amst); 2017 Jan; 49():1-8. PubMed ID: 27842255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair.
    Vaughn JN; Bennetzen JL
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6684-9. PubMed ID: 24760826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae.
    Sasaki M; Tischfield SE; van Overbeek M; Keeney S
    PLoS Genet; 2013 Aug; 9(8):e1003732. PubMed ID: 24009525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-strand breaks repair by gene conversion in silkworm holocentric chromosomes.
    Mon H; Lee J; Kawaguchi Y; Kusakabe T
    Mol Genet Genomics; 2011 Oct; 286(3-4):215-24. PubMed ID: 21842267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low joining efficiency and non-conservative repair of two distant double-strand breaks in mouse embryonic stem cells.
    Boubakour-Azzouz I; Ricchetti M
    DNA Repair (Amst); 2008 Feb; 7(2):149-61. PubMed ID: 17964863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease.
    Nickoloff JA; Brenneman MA
    Methods Mol Biol; 2004; 262():35-52. PubMed ID: 14769955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.
    Muraki K; Han L; Miller D; Murnane JP
    PLoS Genet; 2013 Mar; 9(3):e1003386. PubMed ID: 23555296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.
    Srikanta D; Sen SK; Huang CT; Conlin EM; Rhodes RM; Batzer MA
    Genomics; 2009 Mar; 93(3):205-12. PubMed ID: 18951971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.