These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24821809)

  • 41. RNA-directed repair of DNA double-strand breaks.
    Yang YG; Qi Y
    DNA Repair (Amst); 2015 Aug; 32():82-85. PubMed ID: 25960340
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51.
    Downing B; Morgan R; VanHulle K; Deem A; Malkova A
    Mutat Res; 2008 Oct; 645(1-2):9-18. PubMed ID: 18755201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Misrejoined , residual double strand DNA breaks and radiosensitivity in human tumor cell lines.
    Saleh EM; El-Awady RA
    J Egypt Natl Canc Inst; 2005 Jun; 17(2):93-102. PubMed ID: 16508680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks.
    Moore JK; Haber JE
    Nature; 1996 Oct; 383(6601):644-6. PubMed ID: 8857544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chromosome End Repair and Genome Stability in
    Calhoun SF; Reed J; Alexander N; Mason CE; Deitsch KW; Kirkman LA
    mBio; 2017 Aug; 8(4):. PubMed ID: 28790200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Species-specific double-strand break repair and genome evolution in plants.
    Kirik A; Salomon S; Puchta H
    EMBO J; 2000 Oct; 19(20):5562-6. PubMed ID: 11032823
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes.
    Ono R; Ishii M; Fujihara Y; Kitazawa M; Usami T; Kaneko-Ishino T; Kanno J; Ikawa M; Ishino F
    Sci Rep; 2015 Jul; 5():12281. PubMed ID: 26216318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of telomere addition at DNA double-strand breaks.
    Ribeyre C; Shore D
    Chromosoma; 2013 Jun; 122(3):159-73. PubMed ID: 23504035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.
    Flasch DA; Macia Á; Sánchez L; Ljungman M; Heras SR; García-Pérez JL; Wilson TE; Moran JV
    Cell; 2019 May; 177(4):837-851.e28. PubMed ID: 30955886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Misrejoining of DNA double-strand breaks in primary and transformed human and rodent cells: a comparison between the HPRT region and other genomic locations.
    Rothkamm K; Löbrich M
    Mutat Res; 1999 Apr; 433(3):193-205. PubMed ID: 10343652
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks.
    Muraki K; Han L; Miller D; Murnane JP
    Nucleic Acids Res; 2015 Sep; 43(16):7911-30. PubMed ID: 26209132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides.
    Liu L; Rice MC; Kmiec EB
    Nucleic Acids Res; 2001 Oct; 29(20):4238-50. PubMed ID: 11600713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution.
    Nergadze SG; Santagostino MA; Salzano A; Mondello C; Giulotto E
    Genome Biol; 2007; 8(12):R260. PubMed ID: 18067655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell cycle-dependent resolution of DNA double-strand breaks.
    Ambrosio S; Di Palo G; Napolitano G; Amente S; Dellino GI; Faretta M; Pelicci PG; Lania L; Majello B
    Oncotarget; 2016 Jan; 7(4):4949-60. PubMed ID: 26700820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Landscape of insertion polymorphisms in the human genome.
    Onozawa M; Goldberg L; Aplan PD
    Genome Biol Evol; 2015 Mar; 7(4):960-8. PubMed ID: 25745018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bon voyage: A transcriptional journey around DNA breaks.
    Caron P; van der Linden J; van Attikum H
    DNA Repair (Amst); 2019 Oct; 82():102686. PubMed ID: 31476573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes.
    Wang Y; Smith K; Waldman BC; Waldman AS
    DNA Repair (Amst); 2011 Apr; 10(4):416-26. PubMed ID: 21300576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions.
    Wang Y; Su P; Hu B; Zhu W; Li Q; Yuan P; Li J; Guan X; Li F; Jing X; Li R; Zhang Y; Férec C; Cooper DN; Wang J; Huang D; Chen JM; Wang Y
    Hum Genet; 2015 Jun; 134(6):589-603. PubMed ID: 25792359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.