These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24821966)

  • 1. Adaptive potentiation in rod photoreceptors after light exposure.
    McKeown AS; Kraft TW
    J Gen Physiol; 2014 Jun; 143(6):733-43. PubMed ID: 24821966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors.
    Mendez A; Burns ME; Sokal I; Dizhoor AM; Baehr W; Palczewski K; Baylor DA; Chen J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9948-53. PubMed ID: 11493703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel form of adaptation in mouse retinal rods speeds recovery of phototransduction.
    Krispel CM; Chen CK; Simon MI; Burns ME
    J Gen Physiol; 2003 Dec; 122(6):703-12. PubMed ID: 14610022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bleaching of mouse rods: microspectrophotometry and suction-electrode recording.
    Nymark S; Frederiksen R; Woodruff ML; Cornwall MC; Fain GL
    J Physiol; 2012 May; 590(10):2353-64. PubMed ID: 22451436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of guanylyl cyclase modulation in mouse cone phototransduction.
    Sakurai K; Chen J; Kefalov VJ
    J Neurosci; 2011 Jun; 31(22):7991-8000. PubMed ID: 21632921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light.
    Vinberg F; Turunen TT; Heikkinen H; Pitkänen M; Koskelainen A
    J Gen Physiol; 2015 Oct; 146(4):307-21. PubMed ID: 26415569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
    Sato S; Peshenko IV; Olshevskaya EV; Kefalov VJ; Dizhoor AM
    J Neurosci; 2018 Mar; 38(12):2990-3000. PubMed ID: 29440533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel modulation and the mechanism of light adaptation in mouse rods.
    Chen J; Woodruff ML; Wang T; Concepcion FA; Tranchina D; Fain GL
    J Neurosci; 2010 Dec; 30(48):16232-40. PubMed ID: 21123569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors.
    Woodruff ML; Janisch KM; Peshenko IV; Dizhoor AM; Tsang SH; Fain GL
    J Neurosci; 2008 Feb; 28(9):2064-74. PubMed ID: 18305241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods.
    Makino CL; Dodd RL; Chen J; Burns ME; Roca A; Simon MI; Baylor DA
    J Gen Physiol; 2004 Jun; 123(6):729-41. PubMed ID: 15173221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
    Sakurai K; Young JE; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6793-800. PubMed ID: 21474765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
    Vinberg F; Peshenko IV; Chen J; Dizhoor AM; Kefalov VJ
    J Biol Chem; 2018 May; 293(19):7457-7465. PubMed ID: 29549122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling beyond photon absorption: extracellular retinoids and growth factors modulate rod photoreceptor sensitivity.
    McKeown AS; Pitale PM; Kraft TW
    J Physiol; 2016 Apr; 594(7):1841-54. PubMed ID: 26691896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Step response of mouse rod photoreceptors modeled in terms of elemental photic signals.
    Silva GA; Pepperberg DR
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):3-12. PubMed ID: 14723488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental regulation of calcium-dependent feedback in Xenopus rods.
    Solessio E; Mani SS; Cuenca N; Engbretson GA; Barlow RB; Knox BE
    J Gen Physiol; 2004 Nov; 124(5):569-85. PubMed ID: 15504902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice.
    Makino CL; Wen XH; Olshevskaya EV; Peshenko IV; Savchenko AB; Dizhoor AM
    PLoS One; 2012; 7(10):e47637. PubMed ID: 23082185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased visual sensitivity following periods of dim illumination.
    McKeown AS; Kraft TW; Loop MS
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1864-71. PubMed ID: 25698701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.