These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24821966)

  • 21. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
    He Q; Alexeev D; Estevez ME; McCabe SL; Calvert PD; Ong DE; Cornwall MC; Zimmerman AL; Makino CL
    J Gen Physiol; 2006 Oct; 128(4):473-85. PubMed ID: 17001087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin.
    Frederiksen R; Morshedian A; Tripathy SA; Xu T; Travis GH; Fain GL; Sampath AP
    J Neurosci; 2021 Apr; 41(15):3320-3330. PubMed ID: 33593858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice.
    Howes KA; Pennesi ME; Sokal I; Church-Kopish J; Schmidt B; Margolis D; Frederick JM; Rieke F; Palczewski K; Wu SM; Detwiler PB; Baehr W
    EMBO J; 2002 Apr; 21(7):1545-54. PubMed ID: 11927539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the Ca
    Vinberg F; Kefalov VJ
    Sci Rep; 2018 Oct; 8(1):15864. PubMed ID: 30367097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rod and cone contributions to horizontal cell light responses in the mouse retina.
    Trümpler J; Dedek K; Schubert T; de Sevilla Müller LP; Seeliger M; Humphries P; Biel M; Weiler R
    J Neurosci; 2008 Jul; 28(27):6818-25. PubMed ID: 18596157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light.
    Kang Derwent JJ; Qtaishat NM; Pepperberg DR
    J Physiol; 2002 May; 541(Pt 1):201-18. PubMed ID: 12015430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course of the flash response of dark- and light-adapted human rod photoreceptors derived from the electroretinogram.
    Friedburg C; Thomas MM; Lamb TD
    J Physiol; 2001 Jul; 534(Pt 1):217-42. PubMed ID: 11433004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of low AIPL1 expression on phototransduction in rods.
    Makino CL; Wen XH; Michaud N; Peshenko IV; Pawlyk B; Brush RS; Soloviev M; Liu X; Woodruff ML; Calvert PD; Savchenko AB; Anderson RE; Fain GL; Li T; Sandberg MA; Dizhoor AM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2185-94. PubMed ID: 16639031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors.
    Homma K; Okamoto S; Mandai M; Gotoh N; Rajasimha HK; Chang YS; Chen S; Li W; Cogliati T; Swaroop A; Takahashi M
    Stem Cells; 2013 Jun; 31(6):1149-59. PubMed ID: 23495178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue.
    Savchenko A; Kraft TW; Molokanova E; Kramer RH
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5880-5. PubMed ID: 11320223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In intact mammalian photoreceptors, Ca2+-dependent modulation of cGMP-gated ion channels is detectable in cones but not in rods.
    Rebrik TI; Korenbrot JI
    J Gen Physiol; 2004 Jan; 123(1):63-75. PubMed ID: 14699078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of cyclic GMP synthesis in retinal rods.
    Burns ME; Mendez A; Chen J; Baylor DA
    Neuron; 2002 Sep; 36(1):81-91. PubMed ID: 12367508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulin growth factor 1 receptor/PI3K/AKT survival pathway in outer segment membranes of rod photoreceptors.
    Dilly AK; Rajala RV
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):4765-73. PubMed ID: 18566464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Approaches for Defining the Role of the Ca
    Makino CL; Duda T; Pertzev A; Sharma RK
    Methods Mol Biol; 2018; 1753():129-158. PubMed ID: 29564786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two temporal phases of light adaptation in retinal rods.
    Calvert PD; Govardovskii VI; Arshavsky VY; Makino CL
    J Gen Physiol; 2002 Feb; 119(2):129-45. PubMed ID: 11815664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic and steady-state light adaptation of mouse rod photoreceptors in vivo.
    Silva GA; Hetling JR; Pepperberg DR
    J Physiol; 2001 Jul; 534(Pt 1):203-16. PubMed ID: 11433003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual transduction in human rod photoreceptors.
    Kraft TW; Schneeweis DM; Schnapf JL
    J Physiol; 1993 May; 464():747-65. PubMed ID: 8229828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cone ERG Changes During Light Adaptation in Two All-Cone Mutant Mice: Implications for Rod-Cone Pathway Interactions.
    Bush RA; Tanikawa A; Zeng Y; Sieving PA
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3680-3688. PubMed ID: 31469895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-regulation of rod precursor cell proliferation.
    Lahne M; Piekos SM; O'Neill J; Ackerman KM; Hyde DR
    Exp Eye Res; 2019 Jan; 178():148-159. PubMed ID: 30267656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedback from horizontal cells to rod photoreceptors in vertebrate retina.
    Thoreson WB; Babai N; Bartoletti TM
    J Neurosci; 2008 May; 28(22):5691-5. PubMed ID: 18509030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.