These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24822029)

  • 21. Segmenting eukaryotic genomes with the Generalized Gibbs Sampler.
    Keith JM
    J Comput Biol; 2006 Sep; 13(7):1369-83. PubMed ID: 17037964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of intra-genomic GC content homogeneity within prokaryotes.
    Bohlin J; Snipen L; Hardy SP; Kristoffersen AB; Lagesen K; Dønsvik T; Skjerve E; Ussery DW
    BMC Genomics; 2010 Aug; 11():464. PubMed ID: 20691090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seven GC-rich microbial genomes adopt similar codon usage patterns regardless of their phylogenetic lineages.
    Chen LL; Zhang CT
    Biochem Biophys Res Commun; 2003 Jun; 306(1):310-7. PubMed ID: 12788106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence.
    Gu Z; Wang H; Nekrutenko A; Li WH
    Gene; 2000 Dec; 259(1-2):81-8. PubMed ID: 11163965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.
    Farris MH; Scott AR; Texter PA; Bartlett M; Coleman P; Masters D
    BMC Bioinformatics; 2018 Apr; 19(1):126. PubMed ID: 29642839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating linguistic complexity.
    Troyanskaya OG; Arbell O; Koren Y; Landau GM; Bolshoy A
    Bioinformatics; 2002 May; 18(5):679-88. PubMed ID: 12050064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic and Guanine-Cytosine Content Analysis of Symbiobacterium thermophilum Genes.
    Nishida H; Yun CS
    Int J Evol Biol; 2010 Dec; 2011():634505. PubMed ID: 21350632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two common profiles exist for genomic oligonucleotide frequencies.
    Zhang SH; Wang L
    BMC Res Notes; 2012 Nov; 5():639. PubMed ID: 23158698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tail Wags the Dog? Functional Gene Classes Driving Genome-Wide GC Content in Plasmodium spp.
    Castillo AI; Nelson ADL; Lyons E
    Genome Biol Evol; 2019 Feb; 11(2):497-507. PubMed ID: 30689842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Twisted signatures of GC-biased gene conversion embedded in an evolutionary stable karyotype.
    Mugal CF; Arndt PF; Ellegren H
    Mol Biol Evol; 2013 Jul; 30(7):1700-12. PubMed ID: 23564940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological implications of isochore boundaries in the human genome.
    Zheng WX; Zhang CT
    J Biomol Struct Dyn; 2008 Feb; 25(4):327-36. PubMed ID: 18092827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes.
    Knight RD; Freeland SJ; Landweber LF
    Genome Biol; 2001; 2(4):RESEARCH0010. PubMed ID: 11305938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages.
    Zhou HQ; Ning LW; Zhang HX; Guo FB
    PLoS One; 2014; 9(9):e107319. PubMed ID: 25255224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage.
    Lightfield J; Fram NR; Ely B
    PLoS One; 2011 Mar; 6(3):e17677. PubMed ID: 21423704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Markov models of genome segmentation.
    Thakur V; Azad RK; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011915. PubMed ID: 17358192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An AT mutational bias in the tiny GC-rich endosymbiont genome of Hodgkinia.
    Van Leuven JT; McCutcheon JP
    Genome Biol Evol; 2012; 4(1):24-7. PubMed ID: 22113795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the molecular mechanism of GC content variation among eubacterial genomes.
    Wu H; Zhang Z; Hu S; Yu J
    Biol Direct; 2012 Jan; 7():2. PubMed ID: 22230424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes.
    Romiguier J; Ranwez V; Douzery EJ; Galtier N
    Genome Res; 2010 Aug; 20(8):1001-9. PubMed ID: 20530252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Turtle isochore structure is intermediate between amphibians and other amniotes.
    Chojnowski JL; Braun EL
    Integr Comp Biol; 2008 Oct; 48(4):454-62. PubMed ID: 21669806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isochore chromosome maps of eukaryotic genomes.
    Oliver JL; Bernaola-Galván P; Carpena P; Román-Roldán R
    Gene; 2001 Oct; 276(1-2):47-56. PubMed ID: 11591471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.