These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24822057)

  • 1. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.
    Abe T; Inokuchi H; Yamada Y; Muto A; Iwasaki Y; Ikemura T
    Front Genet; 2014; 5():114. PubMed ID: 24822057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tRNADB-CE 2011: tRNA gene database curated manually by experts.
    Abe T; Ikemura T; Sugahara J; Kanai A; Ohara Y; Uehara H; Kinouchi M; Kanaya S; Yamada Y; Muto A; Inokuchi H
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D210-3. PubMed ID: 21071414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNADB-CE: tRNA gene database curated manually by experts.
    Abe T; Ikemura T; Ohara Y; Uehara H; Kinouchi M; Kanaya S; Yamada Y; Muto A; Inokuchi H
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D163-8. PubMed ID: 18842632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Genes Genet Syst; 2017 Sep; 92(1):43-54. PubMed ID: 28344190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM).
    Iwasaki Y; Abe T; Wada K; Wada Y; Ikemura T
    Microorganisms; 2013 Nov; 1(1):137-157. PubMed ID: 27694768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of self-compressing BLSOM for comprehensive analysis of big sequence data.
    Kikuchi A; Ikemura T; Abe T
    Biomed Res Int; 2015; 2015():506052. PubMed ID: 26495297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNAdb 2009: compilation of tRNA sequences and tRNA genes.
    Jühling F; Mörl M; Hartmann RK; Sprinzl M; Stadler PF; Pütz J
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D159-62. PubMed ID: 18957446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome.
    Ikemura T; Iwasaki Y; Wada K; Wada Y; Abe T
    Genes Genet Syst; 2021 Dec; 96(4):165-176. PubMed ID: 34565757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.
    Bai Y; Iwasaki Y; Kanaya S; Zhao Y; Ikemura T
    Biomed Res Int; 2014; 2014():765648. PubMed ID: 24804244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel bioinformatics strategy for searching industrially useful genome resources from metagenomic sequence libraries.
    Uehara H; Iwasaki Y; Wada C; Ikemura T; Abe T
    Genes Genet Syst; 2011; 86(1):53-66. PubMed ID: 21498923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains.
    Iwasaki Y; Abe T; Wada Y; Wada K; Ikemura T
    BMC Infect Dis; 2013 Aug; 13():386. PubMed ID: 23964903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A manually curated database of tetrapod mitochondrially encoded tRNA sequences and secondary structures.
    Popadin KY; Mamirova LA; Kondrashov FA
    BMC Bioinformatics; 2007 Nov; 8():441. PubMed ID: 17999775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNAfeature: An algorithm for tRNA features to identify tRNA genes in DNA sequences.
    Yang CH; Lin YD; Chuang LY
    J Theor Biol; 2016 Sep; 404():251-261. PubMed ID: 27291467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.
    Velandia-Huerto CA; Berkemer SJ; Hoffmann A; Retzlaff N; Romero Marroquín LC; Hernández-Rosales M; Stadler PF; Bermúdez-Santana CI
    BMC Genomics; 2016 Aug; 17(1):617. PubMed ID: 27515907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5' and 3' tRNA halves.
    Fujishima K; Sugahara J; Tomita M; Kanai A
    PLoS One; 2008 Feb; 3(2):e1622. PubMed ID: 18286179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiator tRNA genes template the 3' CCA end at high frequencies in bacteria.
    Ardell DH; Hou YM
    BMC Genomics; 2016 Dec; 17(1):1003. PubMed ID: 27927177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers.
    Zou Q; Guo J; Ju Y; Wu M; Zeng X; Hong Z
    Mol Inform; 2015 Nov; 34(11-12):761-70. PubMed ID: 27491037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular code motifs in transfer RNAs.
    Michel CJ
    Comput Biol Chem; 2013 Aug; 45():17-29. PubMed ID: 23727957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.