These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24822187)

  • 1. Lateralization of motor cortex excitability in stroke patients during action observation: a TMS study.
    Marangon M; Priftis K; Fedeli M; Masiero S; Tonin P; Piccione F
    Biomed Res Int; 2014; 2014():251041. PubMed ID: 24822187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor facilitation during action observation: The role of M1 and PMv in grasp predictions.
    de Beukelaar TT; Alaerts K; Swinnen SP; Wenderoth N
    Cortex; 2016 Feb; 75():180-192. PubMed ID: 26800203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grasp-specific motor resonance is influenced by the visibility of the observed actor.
    Bunday KL; Lemon RN; Kilner JM; Davare M; Orban GA
    Cortex; 2016 Nov; 84():43-54. PubMed ID: 27697663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact forces evoked by transcranial magnetic stimulation of the motor cortex in a multi-finger grasp.
    Baud-Bovy G; Prattichizzo D; Rossi S
    Brain Res Bull; 2008 Apr; 75(6):723-36. PubMed ID: 18394518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateralization of motor excitability during observation of bimanual signs.
    Möttönen R; Farmer H; Watkins KE
    Neuropsychologia; 2010 Aug; 48(10):3173-7. PubMed ID: 20600176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study.
    Alaerts K; Senot P; Swinnen SP; Craighero L; Wenderoth N; Fadiga L
    Eur J Neurosci; 2010 Mar; 31(6):1144-53. PubMed ID: 20377627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateralization in motor facilitation during action observation: a TMS study.
    Aziz-Zadeh L; Maeda F; Zaidel E; Mazziotta J; Iacoboni M
    Exp Brain Res; 2002 May; 144(1):127-31. PubMed ID: 11976767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action observation effects reflect the modular organization of the human motor system.
    Hilt PM; Bartoli E; Ferrari E; Jacono M; Fadiga L; D'Ausilio A
    Cortex; 2017 Oct; 95():104-118. PubMed ID: 28866300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitability of human motor cortex inputs prior to grasp.
    Prabhu G; Voss M; Brochier T; Cattaneo L; Haggard P; Lemon R
    J Physiol; 2007 May; 581(Pt 1):189-201. PubMed ID: 17332001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The observation of manual grasp actions affects the control of speech: a combined behavioral and Transcranial Magnetic Stimulation study.
    Gentilucci M; Campione GC; Dalla Volta R; Bernardis P
    Neuropsychologia; 2009 Dec; 47(14):3190-202. PubMed ID: 19654016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb.
    Jegatheeswaran G; Vesia M; Isayama R; Gunraj C; Chen R
    Neurosci Lett; 2018 Aug; 681():31-36. PubMed ID: 29787788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grip-dependent cortico-spinal excitability during grasping imagination and execution.
    Cesari P; Pizzolato F; Fiorio M
    Neuropsychologia; 2011 Jun; 49(7):2121-30. PubMed ID: 21539850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor cortex excitability is tightly coupled to observed movements.
    Sartori L; Bucchioni G; Castiello U
    Neuropsychologia; 2012 Jul; 50(9):2341-7. PubMed ID: 22705391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions.
    Vesia M; Bolton DA; Mochizuki G; Staines WR
    Neuropsychologia; 2013 Feb; 51(3):410-7. PubMed ID: 23206539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of a motor evoked response to transcranial magnetic stimulation by the activity level of the first dorsal interosseous muscle in humans when grasping a stationary object with different grip widths.
    Hasegaw Y; Kasai T; Kinoshita H; Yahagi S
    Neurosci Lett; 2001 Feb; 299(1-2):1-4. PubMed ID: 11166923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement observation specifies motor programs activated by the action observed objective.
    Lago A; Fernandez-del-Olmo M
    Neurosci Lett; 2011 Apr; 493(3):102-6. PubMed ID: 21354271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.