BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24822210)

  • 41. A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage.
    Yu X; Hu Y; Zou L; Yan S; Zhu H; Zhang K; Liu W; He D; Yin J
    Acta Biomater; 2021 Feb; 121():288-302. PubMed ID: 33238194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Redifferentiated Chondrocytes in Fibrin Gel for the Repair of Articular Cartilage Lesions.
    Bianchi VJ; Lee A; Anderson J; Parreno J; Theodoropoulos J; Backstein D; Kandel R
    Am J Sports Med; 2019 Aug; 47(10):2348-2359. PubMed ID: 31265317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study.
    Bornes TD; Adesida AB; Jomha NM
    Tissue Eng Part A; 2018 May; 24(9-10):761-774. PubMed ID: 28982297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc.
    Almarza AJ; Athanasiou KA
    Ann Biomed Eng; 2005 Jul; 33(7):943-50. PubMed ID: 16060535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage.
    Puelacher WC; Wisser J; Vacanti CA; Ferraro NF; Jaramillo D; Vacanti JP
    J Oral Maxillofac Surg; 1994 Nov; 52(11):1172-7; discussion 1177-8. PubMed ID: 7965312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model.
    Zhou Z; Yan H; Liu Y; Xiao D; Li W; Wang Q; Zhao Y; Sun K; Zhang M; Lu M
    Regen Med; 2018 Apr; 13(3):331-342. PubMed ID: 29717628
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    J Biomed Nanotechnol; 2013 May; 9(5):790-800. PubMed ID: 23802408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study.
    Embree MC; Iwaoka GM; Kong D; Martin BN; Patel RK; Lee AH; Nathan JM; Eisig SB; Safarov A; Koslovsky DA; Koch A; Romanov A; Mao JJ
    Osteoarthritis Cartilage; 2015 Apr; 23(4):629-39. PubMed ID: 25573797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration.
    Xie X; Wang Y; Zhao C; Guo S; Liu S; Jia W; Tuan RS; Zhang C
    Biomaterials; 2012 Oct; 33(29):7008-18. PubMed ID: 22818985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Proliferation and chondrogenic differentiation of precartilaginous stem cells in self-assembling peptide nanofiber scaffolds].
    Luo W; Fan J; Ye C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Dec; 26(12):1505-11. PubMed ID: 23316647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells.
    Gasparotto VP; Landim-Alvarenga FC; Oliveira AL; Simões GF; Lima-Neto JF; Barraviera B; Ferreira RS
    Stem Cell Res Ther; 2014 Jun; 5(3):78. PubMed ID: 24916098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells.
    Pei M; He F; Li J; Tidwell JE; Jones AC; McDonough EB
    Tissue Eng Part A; 2013 May; 19(9-10):1144-54. PubMed ID: 23216161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.
    Abdul Rahman R; Mohamad Sukri N; Md Nazir N; Ahmad Radzi MA; Zulkifly AH; Che Ahmad A; Hashi AA; Abdul Rahman S; Sha'ban M
    Tissue Cell; 2015 Aug; 47(4):420-30. PubMed ID: 26100682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of cyclic compression on bone marrow mesenchymal stromal cells in tissue engineered cartilage scaffold.
    Wang W; Wan Y; Fu T; Zhou T; Tang X; Wu H; Liu C; Jagodzinski M
    J Biomed Mater Res A; 2019 Jun; 107(6):1294-1302. PubMed ID: 30707490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells.
    Willerth SM; Arendas KJ; Gottlieb DI; Sakiyama-Elbert SE
    Biomaterials; 2006 Dec; 27(36):5990-6003. PubMed ID: 16919326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y; Kim SH; Kim YH; Kim SH
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.
    Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.