BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24823279)

  • 1. Allosteric control of the exportin CRM1 unraveled by crystal structure analysis.
    Monecke T; Dickmanns A; Ficner R
    FEBS J; 2014 Sep; 281(18):4179-94. PubMed ID: 24823279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for cooperativity of CRM1 export complex formation.
    Monecke T; Haselbach D; Voß B; Russek A; Neumann P; Thomson E; Hurt E; Zachariae U; Stark H; Grubmüller H; Dickmanns A; Ficner R
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):960-5. PubMed ID: 23277578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1.
    Koyama M; Matsuura Y
    EMBO J; 2010 Jun; 29(12):2002-13. PubMed ID: 20485264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2.1-Å-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition.
    Saito N; Matsuura Y
    J Mol Biol; 2013 Jan; 425(2):350-64. PubMed ID: 23164569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP.
    Monecke T; Güttler T; Neumann P; Dickmanns A; Görlich D; Ficner R
    Science; 2009 May; 324(5930):1087-91. PubMed ID: 19389996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining dehydration, construct optimization and improved data collection to solve the crystal structure of a CRM1-RanGTP-SPN1-Nup214 quaternary nuclear export complex.
    Monecke T; Dickmanns A; Weiss MS; Port SA; Kehlenbach RH; Ficner R
    Acta Crystallogr F Struct Biol Commun; 2015 Dec; 71(Pt 12):1481-7. PubMed ID: 26625290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis of Targeting the Exportin CRM1 in Cancer.
    Dickmanns A; Monecke T; Ficner R
    Cells; 2015 Sep; 4(3):538-68. PubMed ID: 26402707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants and mechanism of mammalian CRM1 allostery.
    Dölker N; Blanchet CE; Voß B; Haselbach D; Kappel C; Monecke T; Svergun DI; Stark H; Ficner R; Zachariae U; Grubmüller H; Dickmanns A
    Structure; 2013 Aug; 21(8):1350-60. PubMed ID: 23850451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex.
    Petosa C; Schoehn G; Askjaer P; Bauer U; Moulin M; Steuerwald U; Soler-López M; Baudin F; Mattaj IW; Müller CW
    Mol Cell; 2004 Dec; 16(5):761-75. PubMed ID: 15574331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic interactions involving the extreme C terminus of nuclear export factor CRM1 modulate its affinity for cargo.
    Fox AM; Ciziene D; McLaughlin SH; Stewart M
    J Biol Chem; 2011 Aug; 286(33):29325-29335. PubMed ID: 21708948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic basis of CRM1-cargo recognition, release and inhibition.
    Fung HY; Chook YM
    Semin Cancer Biol; 2014 Aug; 27():52-61. PubMed ID: 24631835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the assembly of a nuclear export complex.
    Matsuura Y; Stewart M
    Nature; 2004 Dec; 432(7019):872-7. PubMed ID: 15602554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for the basic patch and the C terminus of RanGTP in regulating the dynamic interactions with importin beta, CRM1 and RanBP1.
    Nilsson J; Askjaer P; Kjems J
    J Mol Biol; 2001 Jan; 305(2):231-43. PubMed ID: 11124902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p.
    Kobayashi J; Matsuura Y
    J Mol Biol; 2013 Jun; 425(11):1852-1868. PubMed ID: 23541588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of RNA helicase DDX3 with HIV-1 Rev-CRM1-RanGTP complex during the HIV replication cycle.
    Mahboobi SH; Javanpour AA; Mofrad MR
    PLoS One; 2015; 10(2):e0112969. PubMed ID: 25723178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.
    Port SA; Monecke T; Dickmanns A; Spillner C; Hofele R; Urlaub H; Ficner R; Kehlenbach RH
    Cell Rep; 2015 Oct; 13(4):690-702. PubMed ID: 26489467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of nuclear export signal orientation in binding to exportin CRM1.
    Fung HY; Fu SC; Brautigam CA; Chook YM
    Elife; 2015 Sep; 4():. PubMed ID: 26349033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Selective Binding of Export Cargoes by Exportin-5.
    Yamazawa R; Jiko C; Choi S; Park IY; Nakagawa A; Yamashita E; Lee SJ
    Structure; 2018 Oct; 26(10):1393-1398.e2. PubMed ID: 30100359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP.
    Shaikhqasem A; Schmitt K; Valerius O; Ficner R
    Acta Crystallogr F Struct Biol Commun; 2021 Mar; 77(Pt 3):70-78. PubMed ID: 33682791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xpo7 is a broad-spectrum exportin and a nuclear import receptor.
    Aksu M; Pleiner T; Karaca S; Kappert C; Dehne HJ; Seibel K; Urlaub H; Bohnsack MT; Görlich D
    J Cell Biol; 2018 Jul; 217(7):2329-2340. PubMed ID: 29748336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.